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Some Questions on the Number
of Generators of a Finite Group.

ANDREA LUCCHINI (*)

Introduction.

In [9] it is proved that if each Sylow subgroup of an arbitrary
finite group can be generated by , elements then the group itself
can be generated by u + 1 elements. In other words if we define

by d(G) the minimal number of generators for a finite group (~ and
with the minimal number of generators of a Sylow p-subgroup
of C-~, we get the relation

Our aim is to give some more precise informations about the mi-
nimal number of generators of a finite group; in particular we will
try to answer the following questions:

1) For what classes of groups the bound given by (*) can be
improved?

2) It is possible to characterize the finite groups for which the
relations (*) holds as equality?

An important role in this problem is played by an invariant that is
called presentation rank and that is usually indicated by pr (C~) : the

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura ed Applicata,
via Belzoni 7, 35131 Padova, Italy.
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definition comes from the study of relation modules but it can also
be defined as the non negative integer that one gets as difference
between d(G) and dZ,9(IG), the minimal number of generators of Ia,
the augmentation ideal of G, as ZG-module.

The results about the minimal number of generators of a finite
group G are different according as pr (G) is or is not equal to zero.
We analyze the first possibility in section 1. In this case d(G) =
= dzo(Io) and so it is possible to apply a formula proved by Cossey,
Gruenberg and Kovacs [2] that gives as a function of the

internal structure of the group G. In particular from this result we
will deduce the answer to question (2) in the case pr (G) = 0 proving:

THEOREM 1. Let G be a finite group with pr (G) = 0 ; if d(G) =
= max df)(G) -f- 1 then G contains a normal subgroup N such that GIN

p||G|
is solvable, D(GIN) = d(G) and GIN is the semidirect product Px~
of an elementary abelian p-group P of rank d(G) - 1 with a cyclic
group ~x~ such that x acts on P as a non trivial power.

In section 2 we will study the groups with non-zero presentation
rank. In this case it becomes very difficult to express d(G) in terms
of the internal structure of G. But an interesting improvement to
the bound given by ( ) holds for the class of the groups with non zero
presentation rank. Precisely we will prove the following result:

THEOREM 2. If G is a finite group with pr (G) ~ 0 then d(G)
 d2(G) + 1.

A consequence of that is:

COROLLARY 3. If G is ac finite group then d(G) max (dZG(IG),
d2(G) + 1).

With the help of the results proved in section 1 and 2, we will
be concerned in section 3 with the class of finite perfect groups. In

this class the bound given by (*) can be improved: if we set

d = max we can show that if G is a perfect group then d(G) ~ d,
but in particular also the following is true:

THEOREM 4. If G is a group then d(G)  max ((d-~-4)/2, d2(G)) .
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1. - Groups with zero presentation rank.

The assumption pr (G) = 0 means that d(G) = dZG(IG), so for the
class of groups with zero presentation rank the informations about
the minimal number of generators for a group G can be deduced from
the study of its augmentation ideal IG- We recall some important
results about dZG(Ia).

The first is that IG is a Swan module, that is the following is truc
([10] 5.3):

The second is a formula proved in [2] by Cossey, Gruenberg and
Kovacs that allows to express as a function of some

integers coming from the study of the structure of the G-modules :
precisely, y given an irreducible GF(p)G-module M, we define the in-
teger numbers q, s(M), by setting q = IHOMG (M, M) I I 9"(M) =
= M) _ IMI, The formula is :

where M va-

ries over all non trivial irreducible G F (P) G modules and, if a is a ra-
tional number, with ~a~ it is denoted the smallest integer ~ a.

In order to use (1.2) we recall some results that make it easier to
calculate M) 1.

In [1] it is proved:

1.3. Let M be an irreducible G-module, q = IHomG (M, .~) ~ I and

d (G, M) the set of the G-invariant subgroups I of C = such that

CII is G-isomorphic to M and ell has a complement in GII. Then if

a) K is a normal subgroup of G;

b) C/.g is complemented in GIK;

c) C/.g is G-isomorphic to Mn for some natural number n;

d) = qnlHl(GIC, M) 1.
The number n in (c) and (d) will be denoted in the following discus-
sion by n(M).
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In [1] it is also proved the following powerful result :

1.4. If G is a f inite group and M is an irreducible faithful 
then H-(G, M) C ~ .

The proof of (1.4) uses the classification of finite simple groups and
so all the results that we will prove applying (1.4) will depend on the
classification.

We need the following lemma :

LEMMA 1.5. Let M be an irreducible non trivial GF(p) G-modute :

morphia to a subgroup of GF(p")* where p" is the order of M;

PROOF. By (1.3, d)

if we set . Since
~ is an irreducible faithful G/C-module by (1.4) qt(M) = IHI(G/G, C
 ~~~ = and this implies t(M)  r(M).

We distinguish two possibilities:

since t(M)  r(M). This proves (i).

implies

We conclude ; also (ii) is proved.
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By Schur’s lemma

Homo 1

The action of ~C on M in induced by the structure of M as G-module,

and so

We can now prove the first result about the augmentation ideal.

PROPOSITION 1.6.

1 ) For each prime number dividing ~G~ + 1
and if the equality dzo(IGlpIG) = dp(G) -E- 1 occurs then either = 1

or G contains a normal subgroup N such that GIN = Px~, the semi-
direct product of an elementary abelian p-group P of rank d2)(G) with a
cyclic group x&#x3E; where x acts on P as a non trivial power automorphism.

2) dzo(IGI2IG) and the equality dzo(IG!2IG) = d2(G) occurs
only if either d2(G)  2 or G contains a normal subgroup N such that
GIN is an elementary abelian 2-group of rank d2(G).

PROOF. The relation dzG(IGlpIG) + 1 is known (see [11]) .
Suppose dzG(IGlpIG) = dp( G) + 1. By 1.2

where M varies over all the non trivial irreducible 
since an irreducible non trivial GF(p) G-module,
.~ say, must exist such that + 11 = d1)(G) + 1. We are
in the situation described in 1.3 and 1.5. There are two possibilities:

i) n(M) = 0; by lemma (1.5, i)
and we get d~(G) c 1.

ii) 0: by lemma (1.5, ii) d~(G) + 1 = + 11 
c n(~) -f-1; GIK - Mn(M) H where Mn(M) is the direct product of
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n(M) H-invariant factors, each of them G-isomorphic to and

OH(M) =1. A Sylow p-subgroup of G/.g is a semidirect product
Mn(M) P of Mn(M) with a Sylow p-subgroup P of .H. In particular
it must be since nlM»d1’(G) it follows P =1,
dj)(G) = n(M) and C~. Since CH(M) = 1, H can be thought of
as a subgroup of Aut hence it is cyclic. So we have shown that

GfK is the semidirect product of an elementary abelian p-group of
rank d1’(G) with a cyclic group that acts as a non trivial power, as
we stated.

We have now to prove that By what we have
just shown d2(G)-~--1 and if, by contradiction, dzG(Io/2Io)=
= d2(G) -f-1, one of the two following cases occurs :

i) G contains a normal °snbgroup N such that G/N = Px~
where P is an elementary abelian 2-group on which x acts as a non
trivial power: a contradiction since every power automorphism of an
elementary abelian 2-group is trivial.

ii) d2(G) = 1: a Sylow 2-subgroup of G is cyclic, so G is

2-nilpotent. We again reach a contradiction since it can be proved:

1.7. I f M is a normal subgroup of a finite group G and p is a prime
numb er but note then 

(So, in our case, taking as M a normal 2-complement in G,
= d2(G).) To prove 1.7 observe that since

( ~ M ~ , p) - 1 there exist two integer r and s such that -f - sp = 1
and define It is easy to verify

for every y E M. Let ... , and let B the G-sub-
module of generated by the elements e -E- gi - 1 + PIG 1 c 2 c t ;

+ pla)eEB but = gi e = (since ~ is a nor-
mal subgroup of G) egi; this implies that also e = E B. So B

contains the G-submodule generated by the elements e and (gZ - 1) +
+ 1 c 2 c t. By (* *) B contains also all the elements x - 1 -f- pIa
for x E M. Since G = M, g1, ... , gl) we conclude B = 
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To complete the proof of proposition 1.6 it remains now to discuss
when the equality d2(G) = occurs. By (1.2) d2(G) =
= max + l~l where M runs over the set of
the irreducible non trivial G.F’(2 ) G-modules.

If d2(G) = d(G/G’ G2) then G has a quotient that is isomorphic to
an elementary abelian 2-group of rank d2(G), as claimed.

Suppose d2(G) = + 1] for a given GF(2)G-module M.
We are in the situation described in 1.3 and 1.5. We distinguish the
two possibilities for n(M) :

it must be also n(M)  d2(G) - 1: in fact a Sylow 2-subgroup of G/.K
cannot be generated by less than n(M) elements, and if, by contra-
diction, n(M) = d,(G), then = 2 and ~II is trivial as G-module.
So we conclude n(.M) = d~(G) - 1. If r(M) = 1 by (1.5, iii) 

where and a is the rank of if as an ele-

mentary abelian 2-group. So is odd and a Sylow 2-subgroup of
is an elementary abelian 2-group of rank ad2(G). Since

x(~(~)2013 1) == d(Mn(M») it follows that either d2(G)  2 or a = 1,
but the latter case must be excluded since it implies that M is a trivial
G-module.

and so d2(G)  3.
To conclude it remains to discuss the case d2(G) = 3: since 

= d2(G) - 1 = 2 a Sylow 2-subgroup of G/K is a semidirect product
X M2)P where M, X M2 is G-isomorphic to .M2 and P is a

Sylow 2-subgroup of H, a complement of M1 X ~2 in G/g. This sub-

group can be generated by 3 elements and this implies:

1) P = X&#x3E; is a cyclic group;

It is
calculate t ( M ) :
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so and if t(M) = 1 then also q = 2. From

we conclude = 1 and r(M) = 2. We have therefore If = O2 X O2
and g c GL(2, 2 ). P is non trivial, otherwise a Sylow 2-subgroup of
G/K would be isomorphic to C2 )4 and could not be generated with 3
elements, y so only the two following cases are possible:

In the first case is a 2-group that can be generated by 3 elements
and so is an elementary abelian 2-group of rank 3.

The second case must be excluded since Hi(GL(2, 2), M) = 1
while we have proved before that M) = qt(M) = q. #

Define d = max We can now characterize the finite groups G

with pr (G) = 0 and such that d(G) = d + 1 by proving:

THEOREM 1.8. Let G be a finite group with pr (G) = 0. If d(G) =
= d + 1 then G contains au normal subgroup N such that GIN is the semi-
direct product Px~ of an elementary abelian p-group of rank d with
a cyclic group x~ where x acts on P as a non trivial power automorphism.

PROOF. Since pr (G) = 0 we have d + 1 = d(G) = dZO(Ia) _
= max dzo(IGlpIG). So there exists a prime p such that + 1 =

= dzG(IGlpIG) = d -E-1: by (1.6, 1) either contains a normal sub-

group N such that G/N has the described structure or dl’(G) = d = 1:
in this latter case all the Sylow subgroup of G are cyclic: this im-
plies that G is solvable and the conclusion follows by ([9] th. 2). #

2. - Groups with nonzero presentation rank.

For groups with nonzero presentation rank our invariant d(G)
is more difficult to study: in particular it is not known whether there
is some general result espressing the minimal number of generators
in terms of the internal structure of the group, as formulas 1.1 and 1.2
do for groups with zero presentation rank.
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One reason is that the class of groups with non zero presentation
rank is difficult to study or characterize: there are few informations
available about it and, although it is known that there exist groups
with arbitrarily large presentation rank (see [10] lemma 5.16), the
examples of groups of this kind are not many. On the other hand
in all known examples the minimal number of generators seems not
too large and one expects that in the class of groups with non zero
presentation rank the general bound « d(G) c d + 1 » can be improved.
Actually the results that we will prove are in this direction.

We will apply the following results:

2.1. (see [4] p. 218). I f N is a soluble normal subgroup of G and
pr (G) &#x3E; 0 then d(G) = d(GIN).

2.2 (see [7] p. 222). Suppose G contains a non-trivial normal perfect
subgroup P all o f whose abelian chie f f actors are cyclic; then:

1 ) i f G/P is cyclic then pr (G) = d(G) - 2;

2) if G/P is not cyclic then

The meaning of 2.2 is that extending above semisimple groups pr (G)
and d(G) increase in the same way. Therefore in the study of groups
with non zero presentation rank it is useful to get informations about
the contribution given to the growth of the number of generators by
the perfect minimal normal subgroups. Our next results have this
a,im.

We will often use the following result, proved by Guralnick, about
the generation of finite simple groups [~] :

2.3. If G is a non abelian f inite simple group then there exists x E G
and P E Syl2 G such that G = P, 

We need also the following lemma, supplementing the informations
given by [9], th. 1.

LEMMA 2 .4. If G is a f inite group and gl’ ... , gn are n elements of
such that gl , ... , gn) = G and n &#x3E; d2 ( G ) then there exist n elements

hl , ... , hn in G such that (hi, ..., hn) = G and the subgroup H =
= 

... , contains a Sylow 2-subgroup of G.
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PROOF. We proceed by induction on the order of (~. Let N be
a minimal normal subgroup of f~; by induction

for suitable elements of G such that ~hl N, ... , con-

tains a Sylow 2-subgroup of G/N.
We distinguish three possibilities:

1) N is a 2-group. Set H = ... , hd2(G) N~ ; a Sylow 2-sub-
group of H is also a Sylow 2-subgroup of G and so it can be generated
by d2(G) elements: by [9] lemma 1.b there exist y1, ... , Ydz(G) in H
such that H = ... , But then the elements YI,..., lYd2(G) I

are those we are looking for.

2) N is a p-group 2. By a theorem of Gaschutz ([10],
prop. 5.18) there exist u,, in N such that G = ... , hn un~.
Let H = ..., HN contains a Sylow 2-subgroup of G
and HN/N gg H/H r1 N: since IN/ is odd H contains a Sylow 2-sub-
group of G and so the elements hnun satisfy the conditions
of the lemma.

3) N is not soluble: N is a direct product of isomorphic non
abelian simple groups. By 2.3 there exist z E N, P E Syl2 N, such that
N = P, Since G = NNa(P) it is not restrictive to assume

Let .H = ~hl , ... , hd$(G~ , P~ ; 2 does not divide

INH:H/ since so .H contains a Sylow 2-subgroup of G.
But then each Sylow 2-subgroup of H can be generated by d2(G)
elements; since P is normal in H, applying [9] lemma 1, (b), it follows
that there are in H d2(G) elements yl, -, Ydz(G) with .g = yl, ... , 
The subgroup ... , contains P, Phnx = Px and
so contains N and, consequently, it is G : we conclude that yi, ...
I hd$ca~ + ~ , ... , hn x are requested elements.

LEMMA 2.5. If P is a normat 2-subgroup of G with d(GIP)  d2(G)
then :

ii) if d(G) = d2((~’-) then either d2(G) = 2 or G is 2-nilpotent.

PROOF. We distinguish two cases :
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2) pr (G) = 0. It is d(G) = dzG(IG) = dzG(IG/pIG). By 1.7,

dZG(II/Pl")  d(G/P) and by (1.6, 2) dzG(IG/2IG)  d2(G). In

Furthermore if d(G) = d2(G) then d2(G) and this, again
by (1.6, 2), implies that either d2(G) c 2 or there exists a normal sub-
group N of G such that G/N is an elementary abelian 2-group of rank
d2(G). In the latter case, since for each Sylow 2-subgroup Q of G,
it is Q n NFrat (Q), by a theorem of Tate (see [6] pag. 431) M is
a 2-nilpotent group; but G/N is a 2-group: we conclude that G itself
is 2-nilpotent. #

In last lemma of this section we are again concerned with the
growth of the minimal number of generators when we go from a proper
factor group G/M to G. We now deal with the case where ~1 is gen-
erated by two conjugate 2-subgroups ; by 2.3 this covers non abelian
simple minimal normal subgroups.

LEMMA 2.6. Let M be a normal subgroup of G such that there exist
x E G and P E Syl2 lVl with M = P, P-T&#x3E;; then :

iii) if  d2(G) and d2(G) &#x3E; 2 then d(G) = d2(G) -E- 1 only
if there exists a subgroup H of G such that H is 2-nilpotent, P is a normal
subgroup of H and G = HM;

- d2(G) -E-- 1 only if there exist an element g of G and a subgroup H
of G such that H is 2-nilpotent, P is a normal subgroup of H and
G = (H, 

PROOF. If

by 2.4, there exist gl, ... , in such that gl M, ... , =

= and the subgroup ... , gd2(G)M) contains a Sylow 2-sub-
group of By Frattini’s argument, it is not restrictive to assume

Let .P is normal
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in T and T contains a Sylow 2-subgroup of G so by [9] lemma l.b,
there exist in G d2((~) elements h1, ..., such that ..., 

= T.
It results

This proves (i). ,

If d2(G), again by Frattin7s argument, we may suppose
that there are in Na(P) d(G/M) elements, gi, ... , 7 gd(Glm) 7 such that

- d2(H), by (2.5, i) and so d(G) -f- 1. Furthermore
if d(G) = d2(G) + 1 then d(H) = d2(G) = d~(H) and so, by (2.5, ii),
if we suppose d2(G) = d2(H) &#x3E; 2, we conclude that H is 2-nilpotent.
This proves ii) and iii).

Finally if d(G/M) = d2(G) and  d2(G), by 2.4, there exist
D(GIM) elements, g1, ... I gd(GIM), such that (gim, = GIM
and the subgroup contains a Sylow 2-subgroup
of G/M. By Frattini’s argument we may choose these elements to
be in If we now set H = ... , ga&#x3E;_i, P) then

It follows d(G)  d(H) -~-- 1. Since H contains a Sylow 2-subgroup of G

~ d2((~’-) + 1. And again d(G)=d2(G)+1 implies d(H)=d2(H): if
we suppose d2(H) &#x3E; 2, from (2.5, ii), it follows that H is a 2-nilpotent
group. #

REMARK 2.7. The hypothesis  d2(G) that appears in iv)
and v) of the previous lemma is verified when if is perfect group;
to prove this it is enough to remark that, by Tate’s theorem ([6]
p. 431), if P is a Sylow 2-subgroup of G then P n M 6 Frat (P),
otherwise ~ would be 2-nilpotent. Furthermore if in particular 
is perfect, and this is the case that we will consider in the next section,
then, since a perfect group has even order and its Sylow 2-subgroups
are not cyclic, d2(G) &#x3E; 2 : so in this case also the hypothesis
d2(G) &#x3E; 2 that appears in iii) and v) is satisfied.
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We can now prove the main result of this section :

THEOREM 2.8. If G is a f inite group then

PROOF. - By induction on If pr (G) = 0 then d(G) - 
Suppose pr (G) ~ 0 and let N be a minimal normal subgroup of G.
If N is solvable, by 2.1, we obtain d(G) = d(G[N)  (by induction).
. max d2(GIN) -~- 1) max (dzG(Io), d2(G) -f-- 1) . If N is not
solvable then it is a direct product of non abelian simple groups and
so, by 2.3, there exist z c N and P e SY12 (N) such that N = ~P, 
We distinguish two possibilities:

ii) as remarked in (2.7) we can apply Lemma
2.6 to conclude that -i- 1. #

COROLLARY 2.9. I f G is a finite group with pr (G) -=1= 0 then d(G) 
c d2(G) -f-1.

The previous results show that in the class of the groups with non
zero presentation rank the general bound for the minimal number
of generators can be improved but it remains an open question
whether the relation « d(G) c d2(G) -f- 1 )} is or not the best that is pos-
sible to prove for this class ; one of the reasons for which it is not

easy to solve this problem is that it is difficult to construct examples
of groups with positive presentation rank.

In theorem 2.8 we have described the structure of a group G with

pr (G) = 0 and such that d(G) = d + 1. Using the above results we
can generalize that theorem proving:

THEOREM 2.10. Let G be cx f inite groap : if d(G) = d + 1 then either
d = d2(G) or G contains a normal subgroup N such that GIN is the semi-
direct product of an elementary abelian p-group P of rank d
with a cyclic group ~x~ where x acts on P as a non trivial power
automorphism.
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PROOF. If pr (G) = 0 then the conclusion follows from th. 1.8.
If pr (G) # 0 we have d + 1 = max d,(G) + 1 = d(G)  (by corol-

ol lGl
lary 2.9) d~(G) -f-1: hence d(G) = d2(G) +1 and d = d2(G). ~

3. - The case of perfect groups.

In this section we apply the results proved above to the class of
perfect groups: in this case we will find a bound for d(G) in terms of
d,(G) and the augmentation ideal 108 This will then imply the bound
d(G)  d. We are interested in this class since it represents the opposite
of the class of the solvable groups from which the study of the mi-
nimal number of generators started and produced the most com-
plete results. But we think that this can be useful also as an example
of how one can work in some other class of finite groups.

We begin by studying the augmentation ideal of a perfect group.

LEMMA 3.1. If G is a finite perfect group and p is a prime dividing
[G] I then

PROOF. By (1.2) dzG(Iafpla) = max -~--1~~~
where if varies over all non-trivial irreducible GF(p) modules.
Since G is perfect GfG’ GfJ = 1, hence there exists a non-trivial irre-

ducible GF(p) G-module M with + 11. We
are in the situation described in 1.3 and 1.5.

We distinguish two cases:

b) n(M) 0 0. A Sylow p-subgroup of is a semidirect pro-
duct where Mn~~~ is a direct product of G-isomorphic
factors and P is Sylow p-subgroup of a complement, .H~ say, of MR(M)
in G/.g. Since it must be 
On the other hand n(M) = d~(G) only if P = 1 and C~ but this
would be imply g cyclic in contradiction with G perfect. Therefore

n(M) ~ dp((~’-) - 1. By (1.5, iii) 1 otherwise H would be cyclic,
but then, from (1.5, iv) it follows
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To conclude we have to show that the equality

can occur only when c 2. If P = 1, since M cannot be

cyclic, = 2dp(G) - 2 whence dp(G) c 2 : but

then, by (1,6.1), 
If from it follows :

a) P is a cyclic p-group: P = x~ ;

It is s(M) = n(M) + t(M) being qt(M) = . On the other

hand

so either t(M) = 0 or t( M) = 1 and in the latter case it is also p = q;
since

we conclude that either d,(G) = 2, but then dza(IG!plo) c2, or t(M) = 1
and r(M) = 2. Therefore the situation that remains to discuss is the

following: If is a 2-dimensional vector space over GF(p) and g is
an irreducible perfect subgroup of GL(2, p ) all of whose Sylow p-sub-
groups are cyclic and otherwise

and H would have an abelian quotient in contradiction with the assump-
tion H~ perfect. Let a be the projection of SL(2, p) over PSL(2, p) :
g’~ is a perfect subgroup of PSL(2, p); but the perfect subgroups of
PSL(2, p) are classified in ([6] p. 213) and from this classification fol-
lows that there are only the following possibilities:
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If (2) is the case then = |A5||ker (n)1 I and Iker (n)1 _ (2, p - 1),
hence either ~g~ = 60 or ~g~ = 120: in both cases, since p2 = 1 mod 5,
p does not divide IHI in contradiction with the hypothesis that H
has a non-trivial Sylow p-subgroup. So (1) holds and consequently
H - SL(2, p) with p # 2 becouse it is perfect. We can conclude

applying

( * * ) If V is a G-module and N is normal subgroup of G such that
Cv(N) = 0 then (see [1] (2.7,1 )) .

Applying this result to the case

since 2 it follows = 0, we obtain p), M) 
c .gl(N, M) = 1: a contradiction since we have proved before

BHI(H, M) ~ - p.
This conclude the proof. #

An immediate consequence is:

PROPOSITION 3.2. If G is a finite perfect group then + 1.
The previous result can be stated also in the following way:

COROLLARY 3.3. I f G is a finite perfect group with pr (G) = 0
then d(G)  d/2 + 1.

We have so proved that in the class of perfect group with zero
presentation rank a stronger bound holds for the minimal numbers
of generators. For this class it is also true:

PROPOSITION 3.4. If G is a perfect group with pr (G) = 0 then

and the equality d(G) = d holds only if d(G) = 2.

PROOF. Since G is perfect d ~ 2 (a group all of whose Sylow sub-
groups are cyclic is soluble) and so the conclusion follows from co-
rollary 3.3. #

The previous results hold in the class of the perfect groups with
zero presentation rank. Before studying the perfect groups with non
zero presentation rank we need some lemma.

LEMMA 3.5. Let G be a perfect group : if 2 then d(G)  d2(G).
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PROOF. Let G be a minimal counterexample. Since G is perfect
d2(G»2. If pr (G) = 0 then d(G) = dzG(IG) = 2 ~ d2(G). Suppose
pr (G) =1= 0: since a simple group has presentation rank equal to zero, G
contains a minimal normal subgroup N with 

= 2 and 1 otherwise GIN would be cyclic con-
trary to the fact that G is perfect: therefore dZGIN(IGIN) = 2 and so,
by induction, d(GIN) c d2(GjN). We distinguish two possibilities :

a) N is solvable: by (2.1)

b) N is a direct product of non abelian simple groups: by (2.3)
N = P, for x c- N and P e Syl2 (N) ; as remarked in 2.7 we can
applay lemma 2.6 and conclude that either or there exists

a 2-nilpotent subgroup H of G with G = HN but in this latter case
G/N would be soluble in contradiction with the hypothesis that G is
perfect. #

LEMMA 3.6. I f G is a finite perfect group then pr (G)  d2(G) - 2.

PROOF. Since G is perfect d2(G) ~ 2 ; hence if pr (G) = 0 we can
conclude pr (G) = 0 ~ d2(G) - 2. Suppose now pr (G) ~ 0. Consider a

minimal normal subgroup N of G. The two following cases are possible:

a) N is solvable: pr (G) + DZG(IG) = d(G) = (by 2.1 ) d(G/N) _
= dZGIN(IGIN) -f- pr (G/N) : hence, from it follows

pr (G) c pr (G/N) c (by 2 c d2(G) - 2.

b) Sn where S in a non-abelian simple group : N does not
have abelian composition factors and is not cyclic, so, by (2.2),
d(G) - pr (G) = d(G/N) - pr (GIN). Since N is the normal closure of
~’ in G and, (by [1] th A) d(S) = 2, we obtain -f- 2 :

it follows that it is also pr (G)pr (GIN)+ 2. Suppose, by con-

tradiction, pr (G) ~ d2(G) - 1. Since dZG(Il) - 1 implies G cyclic and
if dZG(Ia) = 2 then by 3.5 d(G) whence

we may assume 3. Therefore
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it follows induction) 
- 2  d2(G) - 2, a contradiction. If d(GIN) = d2(G), by (2.fi, iv)
d(G) + 1 contrary to the relation d(G»d2(G) + 2 obtained
before. #

LEMMA 3.7. I f G is a finite perfect group and 2 is an augmentation
prime for G, that is dza(IG) = dZG(IG12IG), then 

PROOF. Let G be a minimal counterexample. If pr (G) = 0 then
d(G) = DZG(IG) = d2(G) by (1.6, 2). So we may assume

pr (G) &#x3E; 0. Since G is perfect by (1.2) there exists a nontrivial ir-
reducible GF(2)G-module, M, such that

Let K be the normal subgroup of (~ introduced in (1.3) and let H be
a complement for Mn(M) in We distinguish two cases:

Let N be a minimal normal subgroup of (~ contained in .g : we have

hence 2 is an augmentation prime for GIN and by induction D(GIN) 
d2(G/N).

There are two possibilities:
i) N is soluble: since

ii) N is a direct product of non-abelian simple groups: so, as
remarked in 2.7, we can apply (2.6, iii) to conclude that either d(G) 

or G = HN with H 2-nilpotent: but we exclude the latter
case since it is in contradiction with the assumption that G is perfect.

G = H where is a direct product of H-invariant factors
and CH(M) = 1. Since pr (G) # 0 , y
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Furthermore hence

With the help of the previous lemmas we can now prove the fol-
lowing bound for the minimal number of generators of a perfect group.

THEOREM 3.8. If G is a f inite perfect group then

PROOF. Let G be a minimal counterexample. Since d(G) =
= DZG(IG) + pr (G), if pr (G)  1 then d(G) + 1: therefore we
may assume pr (G) ~ 2. Furthermore it is not restrictive to suppose
that G has no solvable proper normal subgroup: otherwise, if N is

one, by (2.1)

Denote with M the socle of where Nz , a minimal normal

subgroup of G, is isomorphic to with for all j, where

~Sa is a finite non-abelian simple group and {/S~1~~} is a

conjugacy class of subgroups of G.
Every non abelian simple group can be generated by 2 elements

([1], th. B), and has a non cyclic Sylow 2-subgroup, so

hence we may assume M. By (2.3) M = (P, Px~ where x E M
and and as remarked in (2.7) d2(G) &#x3E; 2.

We distinguish the different possibilities:

; (by induction) max I
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2)  d2(G) : by (2.6, iii), since a perfect group G cannot
be written in the form HM with H 2-nilpotent, we get d(G) 

3) d(GIM) = d2(G) : by (2.6, v) either or d(G) =
= d2(G) + 1 and in this latter case there exist g E G and H, a 2-nil-
potent subgroup of G, such that P is a normal subgroup of H and
G = H~, g) M. Suppose, by contradiction, that this may happen:
define - since for each g in G, (Si,i)U = for a

suitable j *, L is a normal subgroup.
We prove now that

if then there exists Si,i such that Si,j but then
f1 = 1 and consequently also n = 1 and so x 0

w C.(P).
Let 1~ be a 2-normal complement of H: since both .h’ and P are

normal in H, Therefore But

then, since g = FQ for Q E Syl2 (H), we get H  LQ ; furthermore from

By 2.2 d(G) - pr (G) = d(G/M) - pr hence d2(G) + 1-
- pr (G) = d2(G) - pr (G/M) and so pr (G) = pr + 1; since we
are assuming pr (G) ~ 2, we have that is a normal subgroup of
a group G/M whose presentation rank is not zero; furthermore the
natural homomorphism from .L on the group n Out (~i, ~ ) has kernel

1in
1 

equal to M and so is a subgroup of Out since Out (S)

is solvable if ~’ is a finite simple group, we conclude that also 
is solvable. So we can apply (2.1) to obtain

Two cases are to be considered:

i) suppose QL jL)  D(GIL) - pr (G jL) - 2: by ([8], 5.1)
the set of the augmentation primes for G/L is contained in the set of
the primes dividing QL/.L : since QL/L is a 2-group we get that 2 is
an augmentation prime for GIL and then, by 3.7, = d(G/L) c

 (by 2.7) d2(G) : this leads to a contradiction since we are
supposing d(G/L) = = d2(G).
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ii) suppose

hence in contradiction with 2.7. #

COROLLARY 3.9. If G is a f inite perfect group and d = max dp(G)
then d(G)  max (d/2 + 2, d2(G)) . 

PIIGI

PROOF. It follows immediately from the previous theorem and
remembering that, by 3.2, dzG(Ia) -E- 1  d/2 + 2. #

COROLLARY 3.10. If G is a finite perfect group with pr (G) ~ 2
then 

PROOF. It is enough to remark that d(G) max (dZG(IG) + 1, d2(G))
and that 

COROLLARY 3.11. If G is a f inite perfect group and
then d(G)  d.

PROOF. If pr (G) ~ 2, by corollary 3.10 and if

pr (G) = 0 the conclusion follows by proposition 3.4. Therefore we

may assume pr (G) = 1 and complete the proof by induction: let N
be a minimal normal subgroup of G; since pr (G) # 0 G is not a simple
group and so If N is soluble (by 2.1) d(G) = d(G/N)d
by induction. If N is a direct product of non abelian simple groups,

in the case d(G/N)  d we can conclude 
while if d(G/N) = d then, from

if follows

hence by 3.4 it must be d = 2: but this latter case leads to a con-
tradiction since ~~(~)&#x3E;3. #
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