RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ANTÓNIO ORNELAS

Parametrization of Carathéodory multifunctions

Rendiconti del Seminario Matematico della Università di Padova, tome 83 (1990), p. 33-44

http://www.numdam.org/item?id=RSMUP_1990__83__33_0

© Rendiconti del Seminario Matematico della Università di Padova, 1990, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Parametrization of Carathéodory Multifunctions.

ANTÓNIO ORNELAS (*)

1. Introduction.

Let $F: X \to \mathbb{R}^n$ be a multifunction which is Lipschitz with constant l and has values F(x) bounded by m. We show that co F(x) can be represented as f(x, U), with U the unit closed ball in \mathbb{R}^n and f Lipschitz with constant 6n(2l+m). Existing representations were: either with U the unit closed ball in \mathbb{R}^n but f just continuous in (x, u) (Ekeland-Valadier [3]); or with f Lipschitz in (x, u) but f in some infinite dimensional space (LeDonne-Marchi [6]).

More generally, let $F: I \times X \to \mathbb{R}^n$ be a multifunction with $F(\cdot, x)$ measurable and $F(t, \cdot)$ uniformly continuous. We show that co F(t, x) can be represented as f(t, x, U), where U is either the unit closed ball in \mathbb{R}^n (in case the values F(t, x) are compact) or $U = \mathbb{R}^n$ (in case the values F(t, x) are unbounded). As to f, we obtain $f(\cdot, x, u)$ measurable and $f(t, \cdot, \cdot)$ uniformly continuous (with modulus of continuity equal to that of $F(t, \cdot)$ multiplied by a constant).

A consequence of this is that differential inclusions in \mathbb{R}^n with convex valued multifunctions, continuous in x, do not generalize differential equations with control in \mathbb{R}^n . In fact, consider the Cauchy problem in \mathbb{R}^n

(CP)
$$x' \in \operatorname{co} F(t, x)$$
 a.e. on I , $x(0) = \xi$,

(*) Indirizzo dell'A.: Dept. Matemática, Universidade de Évora, Largo dos Colegiais, 7000 Évora, Portogallo.

Also on leave from Universidade de Évora and supported by Instituto Nacional de Investigação Científica, Portugal.

with F(t, x) measurable in t and continuous in x. As above we can construct a function f(t, x, u) and a convex closed set U in \mathbb{R}^n such that co F(t, x) = f(t, x, U). Moreover U is compact provided the values F(t, x) are compact, and $f(t, \cdot, u)$ is Lipschitz provided $F(t, \cdot)$ is Lipschitz. Finally by an implicit function lemma of the Filippov type we show that any solution of (CP) also solves the differential equation with control in \mathbb{R}^n :

$$(CDE)$$
 $x'=f(t,x,u)$ a.e. on I , $x(0)=\xi$, $u(t)\in U$.

Reduction of differential inclusions in \mathbb{R}^n (with continuous convexvalued multifunctions) to control differential equations was known, but the regularity conditions were not completely satisfactory. Namely, either f was non-Lipschitz for Lipschitz F (Ekeland-Valadier [3]) or U was infinite dimensional (LeDonne-Marchi [6] or Lojasiewicz-Plis-Suarez [8] added to Ioffe [5]).

General information on multifunctions and differential inclusions can be found in [1].

2. Assumptions.

Let I be a Lebesgue measurable set in \mathbb{R}^n (or, more generally, a separable metrizable space together with a σ -algebra \mathcal{A} which is the completion of the Borel σ -algebra of I relative to a locally finite positive measure μ). Let X be an open or closed set in \mathbb{R}^n (or, more generally, a separable space metrizable complete, with a distance d and Borel σ -algebra \mathfrak{B}). We consider multifunctions F with values F(t,x) either bounded by a linear growth condition—hypothesis (FLB)—or unbounded—hypothesis (FU).

HYPOTHESIS (FLB). $F: I \times X \to \mathbb{R}^n$ is a multifunction with:

- (a) values F(t, x) compact;
- (b) $F(\cdot, x)$ measurable;
- (c) $\exists \alpha, m: I \to \mathbb{R}^+$ measurable such that

$$y \in F(t, x) \Rightarrow |y| \leqslant \alpha(t)|x| + m(t)$$
 for a.e. t;

(d) X is compact, I is σ -compact, $F(t, \cdot)$ is continuous for a.e. t.

Hypothesis (FU). $F: I \times X \to \mathbb{R}^n$ is a multifunction with:

- (a') values F(t, x) closed;
- (b') $F(\cdot, x)$ measurable;
- (d') $\exists w \colon I \times \mathbb{R}^+ \to \mathbb{R}^+$ such that: $dl(F(t, x), F(t, x)) \leqslant w(t, d(x, x))$, with $w(\cdot, r)$ measurable, $w(t, \cdot)$ continuous concave, w(t, 0) = 0 for a.e. t.

We denote by $\operatorname{co} F$ the multifunction such that each value $\operatorname{co} F(t,x)$ is the closed convex hull of F(t,x). It is well known that $\operatorname{co} F$ verifies hypothesis (FLB) or (FU) provided F does (see [4]).

PROPOSITION 1. Let F verify hypothesis (FLB). Then F verifies hypothesis (FU) also, namely it verifies (d') with

$$w(t,r) \leq 2\alpha(t) r + 2m(t)$$
.

3. Parametrization of multifunctions.

THEOREM 1. Let F verify hypothesis (FU). Suppose moreover that each value F(t, x) is compact, and set

$$M(t, x) := \max\{1, |y| : y \in F(t, x)\}$$
.

Then there exists a function $f: I \times X \times U \to \mathbb{R}^n$, with U the unit closed ball in \mathbb{R}^n , such that:

- (i) co $F(t, x) = f(t, x, U) \ \forall x \text{ for a.e. } t;$
- (ii) $f(\cdot, x, u)$ is measurable;
- (iii) $|f(t, x, u) f(t, x, u)| \le 12n$ w(t, d(x, x)) + 6n M(t, x)|u u| for a.e. t.

If moreover F, w are jointly continuous then f is continuous.

COROLLARY 1. – Let F verify hypothesis (FU).

Let U be a convex closed set in \mathbb{R}^n and let $h: I \times X \times U \to \mathbb{R}^n$ verify:

- (a) co $F(t, x) \subset h(t, x, U) \ \forall x \text{ for a.e. } t;$
- (β) $u \mapsto h(t, x, u)$ has inverse $h^{-1}(t, x, \cdot)$: $h(t, x, u) \mapsto u \quad \forall x, u$ for a.e. t;
- (γ) $h(\cdot, x, u)$ and $h^{-1}(\cdot, x, u)$ are measurable;
- (δ) $h(t,\cdot,\cdot)$ and $h^{-1}(t,\cdot,\cdot)$ are jointly continuous for a.e. t.

Then there exists a function $f: I \times X \times U \to \mathbb{R}^n$ such that (i), (ii) of Th. 1 hold and:

(iii')
$$|f(t, x, u) - f(t, x, u)| \le 6nw(t, d(x, x)) + 6n|h(t, x, u) - h(t, x, u)|$$
 a.e..

COROLLARY 2. Let F verify hypothesis (FU).

Then, setting h(t, x, u) = u in Corollary 1, the conclusions of Theorem 1 hold with $U = \mathbb{R}^n$ and $M(t, x) \equiv 1$. (The final part provided F is jointly h-continuous.)

THEOREM 2. Let F verify hypothesis (FU) and let I be σ -compact. Then there exists a σ -compact set E in a Banach space, a function $\varphi \colon X \times E \to \mathbb{R}^n$ and a multifunction $\mathfrak{A} \colon I \to E$ such that:

- (i) co $F(t, x) = \varphi(x, \mathfrak{U}(t)) \ \forall x \text{ for a.e. } t;$
- (ii) $\mathfrak{U}(\cdot)$ is measurable with convex closed values;
- (iii) $\varphi(x, \cdot)$ is linear nonexpansive;
- (iv) $|\varphi(x, u) \varphi(x, u)| \leq 6nw(t, d(x, x)), \forall u \in U(t)$ for a.e. t.

If moreover F is integrably bounded then the values $\mathfrak{U}(t)$ are compact for a.e. t.

4. Intermediate results and proofs.

PROOF OF PROPOSITION 1. Apply the Scorza-Dragoni property in 1.2 (ii) to obtain a sequence (I_k) of compact disjoint sets such that $I = I_0 \cup \mathcal{N}$, \mathcal{N} is a null set, $I_0 = \bigcup I_k$, and $F_k := \operatorname{co} F|_{I_k \times X}$, $\alpha|_{I_k}$, $m|_{I_k}$

are continuous. Set $\alpha_k := \max \alpha|_{I_k}$, $m_k := \max m|_{I_k}$ and:

$$v_{\scriptscriptstyle k}(r) := \sup \left\{ dl(F_{\scriptscriptstyle k}(t,x), F_{\scriptscriptstyle k}(t,x)) : t \in I_{\scriptscriptstyle k}, \, |x-x| \leqslant r
ight\}.$$

It is clear that $v_k(\cdot)$ is nondecreasing and $v_k(r) \leq 2\alpha_k r + 2m_k$. Since I_k , X are compact and F_k is jointly h-continuous, we must have $v_k(r) \to 0$ as $r \to 0$, otherwise a contradiction would follow. By a lemma of McShane [9], there exists a continuous concave function $w_k \colon \mathbb{R}^+ \to \mathbb{R}^+$ such that $w_k(0) = 0$, $w_k(r) \geqslant v_k(r)$, hence

$$\mathrm{dl}\left(F_k(t,x),F_k(t,x)\right)\leqslant w_k(|x-x|) \quad \forall t\in I_k$$
.

Set

$$egin{aligned} w(t,\,r) := & \min\left\{w_{\scriptscriptstyle k}(r),\, 2lpha(t)\, r + 2m(t)
ight\} & ext{for } t \in I_{\scriptscriptstyle k} \ , \ w(t,\,r) := & 2m(t) + 2lpha(t)\, r & ext{for } t \in \mathcal{N} \ . \end{aligned}$$

LEMMA 1. Let \mathcal{K} be any family of nonempty closed convex sets in \mathbb{R}^n such that dl $(K, K) < \infty \ \forall K, K$ in \mathcal{K} . Let B(y, K) be the closed ball around y with radius $r(y, K) := \sqrt{3} d(y, K)$.

Then the map

$$P: \mathbb{R}^n \times \mathcal{K} \to \mathcal{K}$$
, $P(y, K) := K \cap B(y, K)$

is well defined, verifies $P(y, K) = \{y\}$ whenever $y \in K$, and:

$$\operatorname{dl}\left(P(y,K),P(y,K)\right) \leqslant 3 \operatorname{dl}\left(K,K\right) + \left[1+\sqrt{3}\right]|y-y|$$
.

REMARK. This lemma refines and simplifies the construction of LeDonne-Marchi. We have changed the expansion constant from 2 to $\sqrt{3}$ in the definition of the radius r because we believe this value to be the best possible. More precisely, we believe that the Lipschitz constant 3 for the above intersection cannot be improved, and that it is not obtainable unless one uses the expansion constant $\sqrt{3}$.

Moreover, in the definition of the radius r we do not use the Hausdorff distance between two sets, as LeDonne-Marchi, but rather the distance from a point to a set. This is not only conceptually simpler but also seems better fitted for applications (as in Theorem 1).

PROOF.

(a) First we fix y_* in \mathbb{R}^n and prove that

$$\mathrm{dl}\left(P(y_{\,\boldsymbol{\ast}}\,,\,K),\,P(y_{\,\boldsymbol{\ast}}\,,\,\boldsymbol{K})\right)\leqslant 3\,\,\mathrm{dl}\left(K,\,\boldsymbol{K}\right)\qquad\forall K,\,\boldsymbol{K}\in\mathcal{K}\;.$$

Choose any K, K in K and any $\mathbf{y} \in P(y_*, K)$. Set $\varepsilon_* := d(y_*, K)$, $\mathbf{\varepsilon} := d(K, K)$. We may suppose that ε_* , $\mathbf{\varepsilon} > 0$, otherwise just take $y := y_*$, \mathbf{y} respectively. To prove the above inequality we need only find a point y in $P(y_*, K)$ such that $|y - \mathbf{y}| \le 3\mathbf{\varepsilon}$.

To find y, choose points y_1, y_2 in K such that

$$|y_*-y_1|\leqslant \varepsilon_*$$
, $|y_2-y|\leqslant \varepsilon$.

If $|y_*-y_2| > \sqrt{3}\varepsilon_*$ then take $y:=y_2$. Otherwise $y_2 \notin P(y_*,K)$; but in the segment $|y_1,y_2|$ certainly there exists some point y such that $|y_*-y|=\sqrt{3}\varepsilon_*$, hence $y\in P(y_*,K)$. If $|y-y|\leqslant 3\varepsilon$ then (a) is proved. Otherwise by the claim below we have

$$|y_*-y|=|y_*-z|+|z-y|>\sqrt{3}\left(arepsilon_*+\mathbf{\epsilon}
ight).$$

But this is absurd because $y \in P(y_*, K)$ hence

$$|y_*-y| \leqslant \sqrt{3} d(y_*, \mathbf{K}) \leqslant \sqrt{3} (\varepsilon_* + \mathbf{\varepsilon})$$
.

Therefore (a) is proved.

Trigonometrical claim: If $|y-y| > 3\varepsilon$ then $\exists z \in]y_*, y[$ such that:

$$|y_*-z|>\sqrt{3}\,\varepsilon_* \quad \text{ and } |z-y|>\sqrt{3}\,\pmb{\varepsilon}$$
 .

In fact, as we prove below, in the triangle y, y, y_* the angle $\theta + \pi/2$ at y verifies sen $\theta > 1/\sqrt{3}$, in particular $\theta > 0$. Therefore in the segment $]y_*, y[$ certainly there exists a point z such that in the triangle y_*, y, z the angle at y is $\pi/2$. This implies that $|y_* - z| > |y_* - y| = \sqrt{3}\varepsilon_*$, and since

$$1/\sqrt{3} < \operatorname{sen} \theta \leq |z - y|/|y - y| < |z - y|/(3\varepsilon),$$

we have $|z-y| > \sqrt{3} \varepsilon$.

To prove sen $\theta > 1/\sqrt{3}$, set

$$0 < \beta_0 := \arcsin 1/3 < \pi/6 < \alpha_0 := \arcsin 1/\sqrt{3} < \pi/4$$

and notice that we only need to show that $\theta > \alpha_0$. Since $\pi - \alpha_0 - \beta_0 = \alpha_0 + \pi/2$, it is enough to prove that $\theta + \pi/2 > \pi - \alpha_0 - \beta_0$. To

prove this notice that in the triangle y_*, y, y_1 the angle α at y verifies $\sin \alpha \leqslant \varepsilon_*/(\sqrt{3}\varepsilon_*) = 1/\sqrt{3}$, hence $\alpha \leqslant \alpha_0$. In fact we must have $0 \leqslant \alpha \leqslant \alpha_0$ and not $\pi - \alpha_0 \leqslant \alpha \leqslant \pi$ because the later is incompatible with the fact that the angle α has an adjacent side which is larger that the opposite side. Similarly, in the triangle y, y, y_2 the angle β at y verifies sen $\beta < \varepsilon/3\varepsilon = 1/3$, hence $\beta < \beta_0$. In fact we must have $0 \leqslant \beta < \beta_0$ inside the claim and not $\pi - \beta_0 < \beta \leqslant \pi$ because the later would imply $\beta \geqslant \pi/2$ hence $|y-y| \leqslant |y-y_2| \leqslant \varepsilon$. Finally, to show that $\theta + \pi/2 > \pi - \alpha_0 - \beta_0$, we distinguish the following possibilities:

- (i) let y be in the y_* , y_1 , y_2 -plane, in the same side of the y_1 , y_2 line as y_* ; then the inequality $\theta + \pi/2 = \pi \alpha \beta > \pi \alpha_0 \beta_0$ is obvious;
- (ii) let y be in the y_* , y_1 , y_2 -plane, in the side of the y_1 , y_2 -line opposite to y_* , and let $0 < \beta < \alpha$; then $\theta + \pi/2 = \pi \alpha + \beta > \pi \alpha \beta > \pi \alpha_0 \beta_0$;
- (iii) as in (ii) but with $\alpha \leqslant \beta < \beta_0$; then $\theta + \pi/2 = \pi \beta + \alpha > \pi \alpha_0 \beta_0$;
- (iv) let y be outside the y_*, y_1, y_2 -plane and let the projection y' of y onto that plane fall in the side of the y_1, y_2 -line opposite to y_* and let the angle β' , projection of the angle β on that plane, verify $0 \le \beta' \le \alpha$; then $\theta + \pi/2 > \pi \alpha_0 > \pi \alpha_0 \beta_0$;
- (v) as in (iv) but $\alpha \leqslant \beta' < \beta_0$; then $\theta + \pi/2 \geqslant \pi \beta' \alpha >$ $> \pi - \alpha_0 - \beta_0$;
- (vi) as in (iv) but y' in the same side as y_* ; then it is clear that the situation is similar to that in (i), the difference being that $\theta + \pi/2 > \pi \alpha \beta$.

This proves the claim.

(b) Now consider points y, y in \mathbb{R}^n and sets K, K in K. Setting $\varepsilon := \sqrt{3}d(y, K)$, $\varepsilon := \sqrt{3}d(y, K)$, and using (a) one obtains:

$$\begin{split} \operatorname{dl} \left(P(y,K), P(\boldsymbol{y},\boldsymbol{K}) \right) &\leqslant \operatorname{dl} \left(P(y,K), P(\boldsymbol{y},K) \right) + \operatorname{dl} \left(P(\boldsymbol{y},K), P(\boldsymbol{y},\boldsymbol{K}) \right) \leqslant \\ &\leqslant \operatorname{dl} \left(B(y,\varepsilon), B(\boldsymbol{y},\boldsymbol{\varepsilon}) \right) + 3 \operatorname{dl} \left(K,\boldsymbol{K} \right) \leqslant |\boldsymbol{y}-\boldsymbol{y}| + |\varepsilon-\boldsymbol{\varepsilon}| + \\ &+ 3 \operatorname{dl} \left(K,\boldsymbol{K} \right) \leqslant |\boldsymbol{y}-\boldsymbol{y}| + \sqrt{3} \left| \boldsymbol{y}-\boldsymbol{y} \right| + 3 \operatorname{dl} \left(K,\boldsymbol{K} \right). \quad \bullet \end{split}$$

To prove Theorem 1 we need the following result:

Proposition 2 (Bressan [2]). Denote by \mathcal{K}^n the family of non-empty compact convex sets in \mathbb{R}^n . Then there exists a map $\sigma \colon \mathcal{K}^n \to \mathbb{R}^n$ that selects a point $\sigma(K) \in K$ for each K and verifies:

$$|\sigma(K) - \sigma(K)| \leq 2n \operatorname{dl}(K, K)$$
.

Proof of Theorem 1. Clearly $M(\cdot, x)$ is measurable and

$$|M(t,x)-M(t,x)| \leq w(t,d(x,x))$$
.

Consider the function $h: I \times X \times U \to \mathbb{R}^n$, h(t, x, u) := M(t, x)u.

Clearly $h(t, x, \cdot)$ is an homeomorphism between the ball U and the ball of radius M(t, x); let $h^{-1}(t, x, y) := M(t, x)^{-1}y$ be the inverse homeomorphism.

Project now h(t, x, u) into co F(t, x), i.e. set

$$f(t, x, u) := \sigma \circ P[h(t, x, u), \operatorname{co} F(t, x)],$$

where σ is the selection in Proposition 2 and P is the multivalued projection in Lemma 2.

Claim. $f(\cdot, x, u)$ is measurable.

To prove this, notice first that $M_0(\cdot)$ is measurable by Himmelberg [4, Theorem 5.8]. Then $M(\cdot, x)$ and $h(\cdot, x, u)$ are measurable. Consider the closed ball $B(\cdot, x, u)$ of radius

$$r(\cdot, x, u) := \sqrt{3} d(h(\cdot, x, u), \text{ eo } F(\cdot, x))$$

around $h(\cdot, x, u)$. Then $r(\cdot, x, u)$ is measurable by Himmelberg [4, Theorem 3.5, Theorem 6.5], and since

$$d(y,B(\cdot,x,u)) = (|y-h(\cdot,x,u)|-r(\cdot,x,u))^+$$

by Himmelberg [4, Theorem 3.5, Theorem 4.1], $B(\cdot, x, u)$ and its intersection with co $F(\cdot, x)$ are measurable. Therefore this intersection is a measurable map: $I \to \mathcal{K}^n$; and since $\sigma \colon \mathcal{K}^n \to \mathbb{R}^n$ is continuous, $f(\cdot, x, u)$ is measurable.

It is easy to prove (iii) using the Lipschitz properties of σ and P:

$$|f(t, x, u) - f(t, x, u)| \le 6n|M(t, x)u - M(t, x)u| +$$
 $+ 6n|M(t, x)u - M(t, x)u| + 6nw(t, d(x, x)) \le$
 $\le 6nM(t, x)|u - u| + 6n|M(t, x) - M(t, x)| + 6nw(t, d(x, x)) \le$
 $\le 12nw(t, d(x, x)) + 6nM(t, x)|u - u|.$

It is clear that if F is jointly h-continuous then $M_0(\cdot)$ is continuous; and if also w is jointly continuous then M is jointly continuous hence h is jointly continuous. Then the ball B is continuous and its intersection with co F is continuous, by the h-continuity of co F. This means that the intersection is a continuous map: $I \times X \times U \to \mathcal{K}^n$, and since $\sigma \colon \mathcal{K}^n \to \mathbb{R}^n$ is continuous, f is jointly continuous.

To prove (i) fix some $t \in I$, $x \in X$; then for any $y \in \operatorname{co} F(t, x)$, set $u := h^{-1}(t, x, y)$, obtaining $u \in U$, h(t, x, u) = y, hence $f(t, x, u) = \sigma \circ P(y, \operatorname{co} F(t, x)) = y$ because $y \in \operatorname{co} F(t, x)$ already. This means that $\operatorname{co} F(t, x) \subset f(t, x, U)$, and since the opposite inclusion is obvious, (i) is proved.

PROOF OF THEOREM 2. Since I is σ -compact, we can use the Scorza-Dragoni property in [7] to write $I = \mathcal{N} \cup I_0$, \mathcal{N} a null set and $I_0 = \cup I_k$, where (I_k) is a sequence of compact disjoint sets such that $F_k := \operatorname{co} F|_{I_k \times X}$ is lsc with closed graph, $w_k := w|_{I_k \times X}$ is continuous. If moreover there exists $m \colon I \to \mathbb{R}^+$ such that $y \in F(t, x) \Rightarrow |y| \leqslant \langle m(t)$, and m is measurable then we may also suppose that $m|_{I_k}$ is continuous. Let $C^0(X, \mathbb{R}^n)$ be the Banach space of continuous bounded maps $u \colon X \to \mathbb{R}^n$ with the usual sup norm. Set, for $t \in I_0$,

$$E(t):=\{u\in C^0(X,\mathbb{R}^n)\colon |u(x)-u(x)|\leqslant 6nwig(t,d(x,x)ig),$$
 and, in case F is integrably bounded, $|u(x)|\leqslant m(t)\}$.

Set $E_k := \bigcup_{t \in I_k} E(t)$, and let E be the closed convex hull of $\bigcup_{k \in \mathbb{N}} E_k$. Clearly each bounded subset of E(t) is totally bounded, in particular E(t) is compact provided F is integrably bounded; in general E(t) is σ -compact. Since I_k is compact and w_k is jointly continuous, each bounded subset of E_k is totally bounded; in particular E_k is σ -compact, hence E is σ -compact.

Define the function φ to be the evaluation map $\varphi(x, u) := u(x)$; then clearly (iii) holds. Define the multifunction U by:

$$\mathfrak{U}(t) := \{ u \in E(t) \colon u(x) \in \operatorname{co} F(t, x) \ \forall x \in X \} .$$

Since $\mathfrak{U}(t) \subset E(t)$, (iv) holds. Since co F(t,x) and E(t) are convex closed, $\mathfrak{U}(t)$ is convex closed. In particular $\mathfrak{U}(t)$ is compact in case F is integrably bounded. Set now $\mathfrak{U}_k := \mathfrak{U}|_{I_k}$. Since F_k, w_k, m_k have closed graph, one easily shows that \mathfrak{U}_k has closed graph. In particular $\mathfrak{U}_0 := \mathfrak{U}|_{I_0}$ has measurable graph. By Himmelberg [4, Theorem 3.5], \mathfrak{U}_0 is measurable hence \mathfrak{U} is measurable.

Finally, to prove (i), fix any $t \in I_0$, $x \in X$; then, for any $y \in \operatorname{co} F(t, x)$, set $u(x) := \sigma \circ P(y, \operatorname{co} F(t, x))$. Clearly $u \in E(t)$, and $u \in \operatorname{U}(t)$; moreover $\varphi(x, u) = u(x) = y$, so that $\operatorname{co} F(t, x) \subset \varphi(x, \operatorname{U}(t))$. Since the opposite inclusion is obvious, (i) is proved.

5. Application to differential inclusions.

Let I be an interval, bounded or unbounded, and let Ω be an open or closed set in \mathbb{R}^n . Let $F\colon I\times\Omega\to\mathbb{R}^n$ be a multifunction with values either bounded by a linear growth condition—hypothesis (FLB)—or unbounded—hypothesis (FU). Notice that hypothesis (FLB) (d) now simply asks the boundedness of I and the continuity of $F(t,\cdot)$; in fact I is already σ -compact, and for X we can take an adequate compact subset of Ω , using an exponential a priori estimate for solutions of (CP) based on Gronwall's inequality (see [1, Theorem 2.4.1] for example), and supposing either Ω large enough or I small enough.

COROLLARY 3. – Let F verify hypothesis (FU).

Then the Cauchy problem (CP) has the same absolutely continuous solutions as the control differential equation

(CDE)
$$x' = f(t, x, u)$$
 a.e. on I , $x(0) = \xi$, $u(t) \in U$,

where f, U are as in Theorem 1 or Corollary 1 or Corollary 2.

If moreover F, w are jointly h-continuous then for each continuously differentiable solution x of (CP) there exists a continuous control $u: I \to U$ such that

$$x'(t) = f(t, x(t), u(t)) \quad \forall t.$$

A special case which appears more commonly in applications is covered by the simpler:

COROLLARY 4. Let $F: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be a multifunction with compact values F(t, x) bounded by m(t), such that $F(\cdot, x)$ is measurable and $F(t, \cdot)$ is Lipschitz with constant l(t), with $m(\cdot)$ and $l(\cdot)$ integrable.

Then the Cauchy problem (CP) has the same absolutely continuous solutions as the control differential equation

$$x' = f(t, x, u)$$
 a.e. on I , $x(0) = \xi$, $|u(t)| \le 1$,

where $f: \mathbb{R} \times \mathbb{R}^n \times B \to \mathbb{R}^n$ is measurable in t and Lipschitz in (x, u) with constant 6n[2l(t) + m(t)], and B is the unit closed ball in \mathbb{R}^n .

Proposition 3. Let F verify hypothesis (FU).

Let f, U be as in Theorem 1 or Corollary 1 or Corollary 2.

Then for each $x: I \to X$, $y: I \to \mathbb{R}^n$ measurable verifying $y(t) \in \mathcal{E}$ co F(t, x(t)) a.e. there exists $u: I \to U$ measurable such that y(t) = f(t, x(t), u(t)) a.e.

If moreover F, w are jointly h-continuous and x, y are continuous then u is continuous.

PROOF. Consider the homeomorphism h as in Corollary 1 or Corollary 2 or Theorem 1, and set $u(t) := h^{-1}(t, x(t), y(t))$.

PROOF OF COROLLARY 3. For each solution x of (CPR) set y(t) := x'(t) and apply Proposition 3.

Acknowledgement. I wish to thank Professor Arrigo Cellina and an anonymous referee for suggesting the problem.

REFERENCES

- [1] J. P. Aubin A. Cellina, Differential inclusions, Springer, 1984.
- [2] A. Bressan, Misure di curvatura e selezione Lipschitziane, preprint 1979.
- [3] I. EKELAND M. VALADIER, Representation of set-valued maps, J. Math. Anal. Appl., 35 (1971), pp. 621-629.
- [4] C. J. HIMMELBERG, Measurable relations, Fund. Math., 87 (1975), pp. 53-72.

- [5] A. D. Ioffe, Representation of set-valued mappings. II: Application to differential inclusions, SIAM J. Control Optim., 21 (1983), pp. 641-651.
- [6] A. LEDONNE M. V. MARCHI, Representation of Lipschitz compact convex valued mappings, Rend. Ac. Naz. Lincei, 68 (1980), pp. 278-280.
- [7] S. LOJASIEWICZ jr., Some theorems of Scorza-Dragoni type for multifunctions with applications to the problem of existence of solutions for differential multivalued equations, preprint 255 (1982), Inst. of Math., Polish Ac. Sci., Warsaw.
- [8] S. LOJASIEWICZ jr. A. PLIS R. SUAREZ, Necessary conditions for non-linear control systems, preprint 139 (1979), Inst. of Math., Polish Ac. of Sciences. Warsaw.
- [9] E. J. McShane, Extension of the range of functions, Bull. Amer. Math. Soc., 40 (1934), pp. 837-842.
- [10] S. Lojasiewicz jr., Parametrization of convex sets, submitted to J. Approximation Theory.

REMARKS ADDED IN PROOF:

- (a) after sending this paper for publication I have constructed an example showing that the Lipschitz constant 3 for the multivalued projection (Lemma 1) is best possible;
- (b) four months after sending this paper for publication I have received the preprint [10] which extends my multivalued projection to Hilbert space. Using the same proof as in Lemma 1 the extension to Hilbert space is trivial.

Manoscritto pervenuto in redazione il 16 dicembre 1988.