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Parametrization of Carathéodory Multifunctions.

ANTONIO ORNELAS (*)

1. Introduction.

Let F': X —R"® be a multifunction which is Lipschitz with con-
stant ! and has values F(x) bounded by m. We show that co F(x)
can be represented as f(x, U), with U the unit closed ball in R* and f
Lipschitz with constant 6n(2] 4 m). Existing representations were:
either with U the unit closed ball in R* but f just continuous in (z, )
(Ekeland-Valadier [3]); or with f Lipschitz in (z, #) but U in some
infinite dimensional space (LeDonne-Marchi [6]).

More generally, let F': I X X — R* be a multifunction with F(-, x)
measurable and F(¢, -) uniformly continuous. We show that co F(¢, x)
can be represented as f(¢, z, U), where U is either the unit closed ball
in R” (in case the values F(t, ) are compact) or U = R” (in case the
values F(t, #) are unbounded). As to f, we obtain f(-,x, u) meas-
urable and f(¢, -, -) uniformly continuous (with modulus of con-
tinuity equal to that of F(f, -) multiplied by a constant).

A consequence of this is that differential inclusions in R* with con-
vex valued multifunctions, continuous in x, do not generalize diffe-
rential equations with control in R». In fact, consider the Cauchy
problem in R~

(CP) v'ecoF(t,s) ae onl, ax0)=E¢,
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with F(t, ) measurable in ¢ and continuous in z. As above we can
construct a function f(t, x, #) and a convex closed set U in R" such
that co F(t, ) = f(t, z, U). Moreover U is compact provided the
values F(t, x) are compact, and f(¢, -, «) is Lipschitz provided F(¢, -)
is Lipschitz. Finally by an implicit function lemma of the Filippov
type we show that any solution of (CP) also solves the differential
equation with control in R=:

(CDE) 2'=f{f(lt,x,u) ae.on I, x0)=§&, ui@)eU.

Reduction of differential inclusions in R* (with continuous convex-
valued multifunctions) to control differential equations was known,
but the regularity conditions were not completely satisfactory. Namely,
either f was non-Lipschitz for Lipschitz F (Ekeland-Valadier [3])
or U was infinite dimensional (LeDonne-Marchi[6] or Lojasiewicz-
Plis-Suarez [8] added to Ioffe [5]).

General information on multifunctions and differential inclusions
can be found in [1].

2. Assumptions.

Let I be a Lebesgue measurable set in R" (or, more generally,
a separable metrizable space together with a ¢-algebra -+ which is
the completion of the Borel g-algebra of I relative to a locally finite
positive measure u). Let X be an open or closed set in R* (or, more
generally, a separable space metrizable complete, with a distance d
and Borel g¢-algebra $B). We consider multifunctions F with values
F(t, z) either bounded by a linear growth condition—hypothesis
(FLB)—or unbounded—hypothesis (FU).

HypoTHESIS (FLB). F:IxX — R* is a multifunction with:
(@) values F(t, z) compact;
(b) F(-,z) measurable;
(¢) e, m: I - R+ measurable such that

ye F@t, z) = ly|<a®)|r| + m() for a.e. t;
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(d) X is compact, I is o-compact, F(t, -) is continuous for a.e. .

HyrpotHESIS (FU). F:IXX —R" is a multifunction with:
(a') values F(t, x) closed;
(b') F(-, ) measurable;
(d@') Jw: I xR+ —R* such that: di(F(t, 2), F(t, x)) <w(t, d(z, x)),

with w(-, r) measurable, w(t, -) continuous concave, w(t, 0)=0
for a.e. t.

We denote by coF the multifunction such that each value

co F(¢, x) is the closed convex hull of F(¢, x). It is well known that
co F' verifies hypothesis (FLB) or (FU) provided F does (see [4]).

ProrosiTION 1. Let F verify hypothesis (FLB).
Then F verifies hypthesis (FU) also, namely it verifies (d’') with

w(t, r) <20(t)r + 2m(t) .

3. Parametrization of multifunctions.

THEOREM 1. Let F verify hypothesis (FU). Suppose moreover
that each value F(t, ) is compact, and set

M(t, r):= max {1, [y|: y € F(t, )} .

Then there exists a function f: I Xx X X U — R», with U the unit
closed ball in R*, such that:

(i) co F(¢, ) = f(¢, #, U) Va for a.e. t;
(ii) f(-, @, ) is measurable;

(i) |f(¢, @, w) — (¢, x, w)| <120 w(t, d(z, x)) + 6n M(¢, )|u — u|
for a.e. t.

If moreover F, w are jointly continuous then f is continuous.
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COROLLARY 1. — Let F verify hypothesis (FU).
Let U be a convex closed set in R» and let h: IXX XU — R»

verify:
(x) co F(t, x) C h(t,z, U) Va for a.e. t;

(B) w v h(t,z,w) has inverse h~(¢,z,-): h(t,z,u)>u V,u
for a.e. t;

(y) h(-,x, u) and h~(-, z, ) are measurable;
(6) R(t, -, -) and A~Y(¢, -, -) are jointly continuous for a.e. .

Then there exists a function f: I X X x U — R" such that (i), (ii)
of Th. 1 hold and:

(iii’) |f(¢, @, w) — f(¢, %, uw)| <6nw(t, d(z, %)) +
—+ 6n [h(t, z, u) — h(t, x, u)| a.e..

COROLLARY 2. Let F verify hypothesis (FU).
Then, setting h({,x, ) = w in Corollary 1, the conclusions of

Theorem 1 hold with U = R* and M(¢,2) = 1. (The final part pro-
vided F' is jointly h-continuous.)

THEOREM 2. Let F verify hypothesis (FU) and let I be o-compact
Then there exists a o-compact set F in a Banach space, a function
¢: X XE —R" and a multifunction W: I — F such that:

(i) co F(¢, ) = @(x, W(t)) Va for a.e. ¢;
(ii) U(-) is measurable with convex closed values;
(iii) @(, -) is linear nonexpansive;
(iv) |z, u) — @(x, u)| < 6nw(t, d(z, x)), Yu € WU(t) for a.e. t.

If moreover F is integrably bounded then the values U (¢) are
compact for a.e. ?.

4. Intermediate results and proofs.

PrOOF OF PROPOSITION 1. Apply the Scorza-Dragoni property in
1.2 (ii) to obtain a sequence (I;) of compact disjoint sets such that
I=1,U N, Nisa null set, I,=UI, and Fy:= co F|;, xx, %|5, M|z,
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are continuous. Set o:= max«f;, Mm;:= maxm|; and:
v(r) := sup {dU(F(t, @), Fu(t, x)): t € I, |0 — x| <1} .

It is clear that v,(-) is nondecreasing and v,(r) <20 r + 2m,. Since I,,
X are compact and F, is jointly h-continuous, we must have v,(r) — 0
as r — 0, otherwise a contradiction would follow. By a lemma of
McShane [9], there exists a continuous concave ifunetion w: R* — R+
such that w,(0) = 0, w(r)>v(r), hence

dl (Fi(t, @), Fi(t, x)) <w,(je— =|) Viel,.
Set
w(t, r) := min {w,(r), 2a(t) r + 2m(t)} for tel,,

w(t, r) := 2m(t) 4 20(t)r for teN . o

LeEMMA 1. Let X be any family of nonempty closed :convex sets in
R» such that dl (K, K) << oo VK, K in X. Let B(y, K) be the closed
ball around y with radius r(y, K) := 1/3d(y, K).

Then the map

P:R*xX —-X, P(y,K):=KnNB(y,K)
is well defined, verifies P(y, K) = {y} whenever y € K, and:
dl (P(y, K), P(y, K)) <3 dl (K, K) + [1 +v/3]ly — 5] .

REMARK. This lemma refines and simplifies the construction of
LeDonne-Marchi. We have changed the expansion constant from 2
to 4/3 in the definition of the radius r because we believe this value
to be the best possible. More precisely, we believe that the Lipschitz
constant 3 for the above intersection cannot be improved, and that
it is not obtainable unless one uses the expansion constant 4/3.

Moreover, in the definition of the radius r we do not use the
Hausdorff distance between two sets, as LeDonne-Marchi, but rather
the distance from a point to a set. This is not only conceptually sim-
pler but also seems better fitted for applications (as in Theorem 1).

ProoF.
(a) First we fix y, in R* and prove that

dl (P(y4, K), P(y,, K))<3d1(K,K) VE,KeX.
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Choose any K, K in X and any ye€ P(y,, K). Set g,:= d(y,, K),
e:= dl (K, K). We may suppose that &4, € > 0, otherwise just take
Y := Yy, ¥ respectively. To prove the above inequality we need only
find a point y in P(y,, K) such that |y — y|<3e.

To find v, choose points ¥;, ¥, in K such that

[Ys— hl<exs |y — yl<e.
If |yy— y2|>4/3¢, then take y:= y,. Otherwise y,¢ P(y,, K); but
in the segment ly,, y.[ certainly there exists some point y such that

[yx«— y| = v/3 ey, hence y € P(y,, K). If |y — y| <3¢ then (a) is proved.
Otherwise by the claim below we have

e— 3| = lyx— 2|+ [e— y[>v3Blex + €) .
But this is absurd because y € P(y4, K) hence
s — ¥I<V3d(ys, K)<v/3(ex + €) .

Therefore (a) is proved.
Trigonometrical claim: If |y — y| > 3¢ then 3z € Jy,, y[ such that:

[ys— 2| >4/3e, and |z— y|>+/3€.
In fact, as we prove below, in the triangle y,y,y, the angle
0 + #/2 at y verifies sen 6 > 1/4/3, in particular 6 > 0. Therefore in
the segment Jy,, y[ certainly there exists a point 2 such that in the
triangle y,,y,2 the angle at y is #x/2. This implies that |y, — 2| >
> |yx— Y| = v/3¢&4, and since
13 <senb<le— yllly— ¥ < le— ¥I/(3¢) ,

we have |z — y|>+/3e.
To prove sen f > 1/4/3, set

0 < By:= arcsen1/3 < z[6 < op:= arcsen 1/4/3 < n[4

and notice that we only need to show that 6 > «,. Since w— oy — fo =
= oy + /2, it is enough to prove that 0 4 n/2 >z — oy— f,. To
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prove this notice that in the triangle y,, y, ¥, the angle « at y verifies
sena<ey/(v3ex) = 1/4/3, hence a<a,. In fact we must have
0<a<a, and not w — ay<ax<7 because the later is incompatible with
the fact that the angle o has an adjacent side which is larger that the
opposite side. Similarly, in the triangle y, y, y. the angle § at y verifies
sen B < €/3e = 1/3, hence < f,. In fact we must have 0<pg < g,
inside the claim and not = — f,< <z because the later would imply
B>m/2 hence |y — y|<|y — ¥:|<e. Finally, to show that 6 4 7/2 >
> 7w — ay— fP,, We distinguish the following possibilities:

(i) let y be in the y,, y,, y,-plane, in the same side of the ¥, , y,-
line as y,; then the inequality 0 + #/2 =7 — c— f >
> 7 — ay— f, is obvious;

(ii) let y be in the y,, y,, y,-plane, in the side of the y,, y,-line
opposite to y,, and let 0<f<o; then 0 4+ 7/2 =7 — o +
+B>a—a—B>a— 00— fo;

(iii) as in (ii) but with a<f<f,; then 0 + #/2 =7 — f + a >
> — otg— Po;

(iv) let y be outside the y,, ¥, ¥.-plane and let the projection y’
of y onto that plane fall in the side of the y,, y,-line opposite
to y4 and let the angle 8, projection of the angle § on that
plane, verify 0 <f'<o; then § + n/2 > 7 — g > 7 — oy — fo;

(v) as in (iv) but a<p <pB,; then 0+ n2>m—pf —a>
> — otg— Po;

(vi) as in (iv) but y’ in the same side as y,; then it is clear that
the situation is similar to that in (i), the difference being
that 0 + #/2 > — a— f.

This proves the claim.

(b) Now consider points y, ¥ in R* and sets K, K in J. Setting
e:=+/3d(y, K), € := +/3d(y, K), and using (¢) one obtains:

dl (P(y, K), P(y, K))<dl (P(f’/a K), P(y, K)) +dl (P(y, K), P(y, K))<
<dl(B(y, ¢), B(y,€)) + 3 A1 (K, K)<|y— y| + ¢ — €| +
+3d(K,K)<ly—y|++v3ly—y| +3A(K,K). o

To prove Theorem 1 we need the following result:



40 Anténio Ornelas

PROPOSITION 2 (Bressan [2]). Denote by X» the family of non-
empty compact convex sets in R*. Then there exists a map o: J» — R
that selects a point ¢(K)e€ K for each K and verifies:

lo(K) — o(K)|<2n dl (K, K) .
Proor oF THEOREM 1. Clearly M(-,x) is measurable and
| M (¢, @) — M(2, )| <w(t, d(z, x)) .

Consider the function h: IXX X U — R*, h(t, , u) := M(t, x)u.
Clearly h(t, z, -) is an homeomorphism between the ball U and the
ball of radius M(¢, x); let h~'(¢, 2, y):= M(t, x)"'y be the inverse
homeomorphism.
Project now h(t, x, u) into co F'(t, x), i.e. set

f(¢, @, w) := oo P[h(t, ®, u), co F(t, )],

where o is the selection in Proposition 2 and P is the multivalued
projection in Lemma 2.

Claim. f(-,x,u) is measurable.

To prove this, notice first that M,(-) is measurable by Himmel-
berg [4, Theorem 5.8]. Then M(-,x) and h(-,x, ) are measurable.
Consider the closed ball B(-, z, u) of radius

(e @, u) 1= \/3d(h('7 @, u), co F(-, w))

around h(-,2,u). Then #(-,z,u) is measurable by Himmelberg [4,
Theorem 3.5, Theorem 6.5], and since

a(y, B(+, @, “)) = (ly—' By @y u)|— r(-, 2, '“'))+

by Himmelberg [4, Theorem 3.5, Theorem 4.1], B(-,, %) and its
intersection with co F(-,x) are measurable. Therefore this inter-
section is a measurable map: I — Ji»; and since ¢: Jo* — R* is con-
tinuous, f(-, 2, %) is measurable.
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It is easy to prove (iii) using the Lipschitz properties of ¢ and P:

If(y 2y w) — f(t, %, w)|<6n|M @, v)u — M(t, z)u| +
+ 6n|M(t, 2) u — M(t, x) u| + 6nw(t, d(z, x)) <
<6nM(t, z)|u — u| + 6n|M(t, 2) — M(t, x)| + 6nw(l, d(z, x)) <
<12nw(t, d(z, x)) + 6nM (¢, z)|u — u|.

It is clear that if F' is jointly h-continuous then M,(-) is continuous;
and if also w is jointly continuous then M is jointly continuous hence h
is jointly continuous. Then the ball B is continuous and its intersec-
tion with co F is continuous, by the h-continuity of co #. This means
that the intersection is a continuous map: I XX X U — X», and since
o: X» — R" is continuous, f is jointly continuous.

To prove (i) fix some teI, x€ X; then for any y € co F(t, x),
set u:= h7I(t, x, y), obtaining u € U, k(t, x, u) = y, hence f(t, x, u) =
= ooP(y, co F(¢, x)) = y because y € co F(t, x) already. This means
that co F(t, x) C f(¢, x, U), and since the opposite inclusion is obvious,
(i) is proved. .

ProoOF OF THEOREM 2. Since I is o-compact, we can use the Scorza-
Dragoni property in[7] to write I = N UI,, N a null set and
I,= v I, where (I;) is a sequence of compact disjoint sets such that
Fy:=coF|«x is lsc with closed graph, w,:= w|; «xx is continuous.
If moreover there exists m:I — Rt such that ye F(, o) = |y|<
<m(t), and m is measurable then we may also suppose that m|;, is
continuous. Let C°(X, R") be the Banach space of continuous bounded
maps %: X — R» with the usual sup norm. Set, for ¢ € I,,

E(t) := {u e C(X, R): |u(x) — u(x)|<6bnw(t, d(z, x)),

and, in case F is integrably bounded, |u(z)|<m(?)} .

Set E,:= ] E(t), and let E be the closed convex hull of U EB. Clearly

te€lx
each bounded subset of E(t) is totally bounded, in partxcula.r E(t)
is compact provided F is integrably bounded; in general E(t) is
o-compact. Since I, is compact and w, is jointly continuous, each
bounded subset of F, is totally bounded; in particular E, is o-compact,
hence F is c-compact.
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Define the function ¢ to be the evaluation map ¢(x, %) := u(z);
then clearly (iii) holds. Define the multifunction WU by:

W(t) := {u € B(t): u(x) € co F(t, z) Vz e X} .

Since AU(t) c E(t), (iv) holds. Since co F(f,z) and E(f) are convex
closed, Us(t) is convex closed. In particular <Us(¢) is compact in case F
is integrably bounded. Set now Uy:= UW|;:. Since Fy, wy, m; have
closed graph, one easily shows that U, has closed graph. In particular
U := U|;, has measurable graph. By Himmelberg [4, Theorem 3.5],
U, is measurable hence U, is measurable.

Finally, to prove (i), fix any tel,, x€X; then, for any
y eco F(t, x), set u(x):= goP(y,coF(t,x)). Clearly ue E(t), and
u € Us(¢); moreover ¢(x, u) = u(x) = y, so that co F(z, x) C p(x, Us(t)).
Since the opposite inclusion is obvious, (i) is proved. o

S. Application to differential inclusions.

Let I be an interval, bounded or unbounded, and let {2 be an open
or closed set in R». Let F': I X2 — R~ be a multifunction with values
either bounded by a linear growth condition—hypothesis (FLB)—or
unbounded—hypothesis (FU). Notice that hypothesis (FLB) (d) now
simply asks the boundedness of I and the continuity of F(t, -); in
fact I is already o-compact, and for X we can take an adequate com-
pact subset of £, using an exponential a priori estimate for solutions
of (CP) based on Gronwall’s inequality (see [1, Theorem 2.4.1] for
example), and supposing either £ large enough or I small enough.

COROLLARY 3. — Let F verify hypothesis (FU).
Then the Cauchy problem (CP) has the same absolutely continuous
golutions as the control differential equation

(CDE) '=ft,x,u) ae on I, xz(0)=E&, ut)eU,

where f, U are as in Theorem 1 or Corollary 1 or Corollary 2.

If moreover F, w are jointly h-continuous then for each continu-
ously differentiable solution x of (CP) there exists a continuous con-
trol u: I — U such that

/(1) = f(t, %(0), u(®))  Vi.
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A special case which appears more commonly in applications is
covered by the simpler:

CoroLLARY 4. Let F: R xR~ R" be a multifunction with com-
pact values F(t, x) bounded by m(t), such that F(-, ) is measurable
and F(t, -) is Lipschitz with constant I(f), with m(-) and I(-) integrable.

Then the Cauchy problem (COP) has the same absolutely con-
tinuous solutions as the control differential equation

*' = f(t,xz,u) ae. onlI, 20)=§&, |ul)|<l,

where f: RXR” X B — R” is measurable in ¢ and Lipschitz in (z, )
with constant 6n[2l(f) + m(¢)], and B is the unit closed ball in R~

ProposiTION 3. Let F verify hypothesis (FU).

Let f, U be as in Theorem 1 or Corollary 1 or Corollary 2.

Then for each x:I — X, y:I — R" measurable verifying y(f) €
€ co F(t, x(t)) a.e. there exists u: I — U measurable such that y(f) =
= f(¢, x(2), u(?)) a.e.

If moreover F, w are jointly h-continuous and x, y are continuous
then wu is continuous.

Proor. Consider the homeomorphism % as in Corollary 1 or Corol-
lary 2 or Theorem 1, and set u(t) := h~'(t, x(2), y(t)).

PrROOF OF COROLLARY 3. For each solution x of (CPR) set
y(t) := x/(t) and apply Proposition 3.

Acknowledgement. 1 wish to thank Professor Arrigo Cellina and an
anonymous referee for suggesting the problem.
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REMARKS ADDED IN PROOF:

(@)

(®)

after sending this paper for publication I have constructed an example
showing that the Lipschitz constant 3 for the multivalued projection
(Lemma 1) is best possible;

four months after sending this paper for publication I have received the
preprint [10] which extends my multivalued projection to Hilbert space.
Using the same proof as in Lemma 1 the extension to Hilbert space is
trivial.

Manoscritto pervenuto in redazione il 16 dicembre 1988.



