@article{RSMUP_1991__85__201_0, author = {Bessi, Ugo}, title = {Multiple closed orbits for singular conservative systems via geodesic theory}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {201--215}, publisher = {Seminario Matematico of the University of Padua}, volume = {85}, year = {1991}, mrnumber = {1142541}, zbl = {0850.70210}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1991__85__201_0/} }
TY - JOUR AU - Bessi, Ugo TI - Multiple closed orbits for singular conservative systems via geodesic theory JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1991 SP - 201 EP - 215 VL - 85 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1991__85__201_0/ LA - en ID - RSMUP_1991__85__201_0 ER -
%0 Journal Article %A Bessi, Ugo %T Multiple closed orbits for singular conservative systems via geodesic theory %J Rendiconti del Seminario Matematico della Università di Padova %D 1991 %P 201-215 %V 85 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1991__85__201_0/ %G en %F RSMUP_1991__85__201_0
Bessi, Ugo. Multiple closed orbits for singular conservative systems via geodesic theory. Rendiconti del Seminario Matematico della Università di Padova, Tome 85 (1991), pp. 201-215. http://archive.numdam.org/item/RSMUP_1991__85__201_0/
[1] On periodicity problems in the calculus of variations in the large, A.M.S. Translations, 14 (1960), pp. 107-172. | MR | Zbl
,[2] Closed orbits of fixed energy for singular hamiltonian systems, Archive Rat. Mech. and Anal., to appear. | MR | Zbl
- ,[3] Multiple periodic trajectories in a relativistic gravitational field, preprint S.N.S., 77 (1990). | MR | Zbl
- ,[4] F. GIANNONI, Periodic solutions of prescribed energy for a class of hamiltonian systems with singular potentials, J. Differential Equations, 82 (1989), pp. 60-70. | MR | Zbl
-[5] Symmetries and non-collision closed orbits for planar, N-body type problems, J. Nonlinear. Analysis, to appear. | Zbl
- ,[6] M. DEGIOVANNI, Dynamical systems with newtonian type potentials, Ann. Scuola Norm. Sup. Pisa, 15 (1988), pp. 467-494. | Numdam | MR | Zbl
-[7] Lectures on Closed Geodesic, Grundlehren der Math. Wiss., 235. | Zbl
,[8] Sulle orbite periodiche, Rendiconti R. Accad. dei Lincei, 21-1 (1912), pp. 251-258. | JFM
,