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Torsional Instabilities

of Greenhill Type in Elastic Rods.

FRANCO PASTRONE (*)

ABSTRACT - The equilibrium and stability of an elastic rod subjected to a wrench
is studied. Stability conditions are given for the class of helical and straight
solutions, generalizing the classical results of Greenhill.

1. Introduction.

The problem of stability of a Kirchhoff rod subjected to a wrench
has been investigated first by Greenhill [7] in 1883 and later by many
others (vid. Love [8], Antman [3] and the references quoted therein).
In this note we make use of a general theory of nonlinearly elastic rods
developed by Antman in [1-3], as restricted to the hyperelastic case, as
well as of some results of Ericksen [4,5]; our purpose is to investigate
the stability of certain classes of solutions.

Both Antman and Ericksen generalize the classical theory of Kirch-
hoff by allowing for axial extension, shearing of the cross-section with
respect to the axis, and certain cross-sectional deformations; moreover,
they accept nonlinear constitutive equations. This richer structure

gives way to a wider variety of solutions, with classical results still in-
cluded as particular cases. We here study the problem of stability of he-
lical solutions, under the action of dead loads (cfr. Antman [2] and Er-
icksen [4]). We use a semi-inverse method modelled after Ericksen [5],
and specify the load to be a wrench, i.e., a force of magnitude F acting
along the axis of the helix and a couple of magnitude M parallel to such
axis.

As both straight and helical solutions can be maintained under the
same wrench, we are faced with a problem of nonuniqueness of equilib-

(*) Indirizzo dell’A.: Dipartimento di Matematica, Università di Torino, Via
Carlo Alberto 10, 10123 Torino.
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rium states. By choosing a suitable class of perturbed solutions, and ac-
cepting an energy criterion for stability, we give a formal condition of
stability for solutions branching from a trivial (i.e., straight) solution.
We then restrict attention to helices, and assume the material to be
transversely isotropic about the rod axis; under these hypothesis we
obtain explicit stability conditions depending on the force F and the
couple M, as well as the geometrical-kinematic variables of a helix,
namely, pitch, radius, length and extension. Such conditions generalize
the classical results attributed to Greenhill by Love [8], which, on the
other hand, can also be found directly, as shown in Section 3.

2. Equilibrium equations for a hyperelastic rod.

A rod is a material curve given by a vector-valued function of a ma-
terial coordinate s:

and equipped with a pair of vector-valued functions:

satisfying the condition:

where a prime denotes differentation with a respect to s. If s is the arc
1

length parameter of the curve in the reference configurations = ds is
o

the total length of the curve. The plane passing through the point of co-
ordinate s on the curve and containing d, and d2 is called the section of
the rod at s.

For a hyperelastic rod, the density of strain-energy is specified by
the scalar-valued function

The total stored energy is

under the assumption that only end loads are applied to the rod, we can
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obtain the equilibrium equations (cfr. [4])

Of course, in order to have a well-posed boundary-value problem,
these equations musy be supplemented by suitable boundary condi-
tions.

The differential system (2.5) has some firts integrals. One of these
reads off directly from (2.5)1:

and is interpreted as the balance of forces. Balance of moments, as
shown in [4], has the form

Finally, if W does not depend explicitly on s, we obtain (cfr. [4])
that

If we put

equations (2.6) and (2.7) take the well-known form

Let the reference configuration of the rod be straight and prismatic.
Then r’ has constant value e3 in the reference configuration, with
e3.e3 = 1. We introduce a referential orthonormal basis ~ei ~ : ei - ej = 

i, j = 1, 2, 3. (Here and henceforth Greek indices take values on 1, 2;
Latin indices on 1, 2, 3; the summation convention holds).
We deal with the equilibrium problem consisting of (2.5) and the

geometrical boundary conditions

moreover a wrench is applied (cfr. [2, 8~), i.e., a pair of a force F and a
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couple M, with

F and M two assigned constants. Notice that the choice of the da’s re-
mains arbitrary.

In view of (2.6) and (2.7), the equations of equilibrium may be
equivalently written as

These equations admit straight, helical and circular solutions; as Erick-
sen has shown in [4], these are the only uniform states which solve the
system (2.6), (2.7).
We assume the rod to be homogeneous, but this assumption by it-

self does not help much as far as the problem of establishing existence
and / or multiplicity of solutions is concerned. To obtain explicit re-
sults, we must introduce further assumptions on the function W and, in
addition, study rods with fairly simple geometry.

For instance, if we restrict ourselves to the generalized Kirchhoff s
theory of rods (namely, if we stipulate that = our analysis is
easied by the results of Antman [2]. We can also compare our results on
stability with the classical results of Greenhill [7]. Indeed, the indepen-
dent kinematical unknowns are now six, and equations (2.12) are suffi-
cient to determine the equilibrium configurations, while equation (2.8)
can be seen as a constitutive restriction. Following Antman [2], we in-
troduce an orthonormal basis ~di ~, with d3 = d, x d2 and relate this ba-
sis with respect to the fixed basis lei I by means of the Euler angles ~,
0, ~ (see Love [8]). As Antman has proved, the same terminal load can
maintain deformations with both straight and helical axis. We intro-
duce the strain variables

where ëijh is the alternating tensor. We need not to record here the rela-
tions between u and the Euler angles, to be found in Antman [2], Sec-
tion 2.

The equations of motion have the form (2.9); the constitutive rela-
tions for n and m are assumed to satisfy certain conditions of strict
monotonicity, coercitivity and isotropy (see [1, 2]).
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It proves convenient to define:

It follows from these definitions that y, Y3 and m satisfy the constitu-
tive relations

in addition q = = const, u = const.
Under the present circumstances, the following theorems hold.

i) If sin0 = 0, and if p and q (i.e., F and M) are prescribed arbi-
trarily, then the governing equations have a unique solution. This de-
formation has a straight axis along e3 , with sections perpendicular to it,
and has a constant twist.

ii) Let the constitutive functions Y and Z satisfy the mild

growth conditions

and let F # 0 and q be arbitrary. Then, there is a number 6 &#x3E; 0 depend-
ing on F and q such that there is a deformation with a nondegenerate
helical axis for any prescribed 0 satisfying 0  sin 0  8.

iii) Let q # 0 be arbitrary. Then there is a number e &#x3E; 0 depend-
ing on q such that there is a deformation with a nondegenerate helical
axis maintained by zero terminal forces for any prescribed 0 satisfying
0  sin 0  d.

These theorems are demonstrated in a more general form in [2],
where it is also shown that a deformation with helical axis can be main-
tained solely by a force or a couple along the axis e3 , and where the case
of deformations with circular axis is also studied. By summary, we
have that, for any prescribed load F and M, there exists a helical sol-
ution with a fixed angle 0; the straigh (= degenerate) solution is in-

cluded, for 0=0.

3. Kirchhoff s problem.

In this section we want to show that one can recover Love’s results
on equilibrium and stability for an inextendible rod, in the simple case
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F = 0, namely, that there exist helical solutions; that the helical form
can be maintained by terminal couple alone; and that, when twisting
couple exceeds a critical value, the straight twisted rod becomes
unstable.

Let us consider a rod, straight and not prismatic in the reference
unstressed state, under a twisting couple M = Me3 . (If the rod were
prismatic in the unstressed state, a wrench would be required to main-
tain a helical form; see Love [8], p. 415). The inextensibility condition
reads: (r’. r ’ )1/2 = const. The equilibrium equations (2.12) become

Taking the scalar product of (3.1) by e , we obtain:

where

or, alternatively, by scalar product with di :

More explicitely, (3.3) reads

In terms of the strain variables (2.13) u and y i, the strain energy
density W = W(u, y) gives rise to the constitutive equations

and, by (3.3)

We accept the classical Kirchhoff-Love assumption and let W be a
quadratic function of the variables u i only:
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Accordingly, (3.6) takes the aspect

Then, as m’ = 0, and using (3.7), we have

or, equivalently,

If 0 vanishes, we have only twist, no bending: the deformed con-
figuration is straight; if 0 = (1/2) n, we have only bending, no twist: the
deformed configuration is circular. Finally, using the relations referred
to above between ui and the Euler angles, we can see that the solutions
we are interested have the form:

Now we wish to study the stability problem of straight deformed
configurations versus helical perturbations. For a prescribed end load,
a solution will be called stable if it minimizes the total energy in the
class of neighbouring helical and straight deformations.

With this fairly naive notion of stability, and confining our attention
to helices with small 0 which form one complete turn (as requested in
Love [8]), we can easily recover the results obtained by Greenhill [7], in
a different way (and in the general case when F and M do not vanish).
In such straight and helical configurations, as to solve our static prob-
lem, the total energies are, respectively

thus, when M exceeds the energy of the helical rod becomes

greater than the energy of the straight rod, or, rather, according to the
notion of stability explained above, the straight twisted rod becomes
unstable.

In the next section we adress ourselves to the corresponding prob-
lem in the non-linear case, allowing for non-null extensibility. We still
make use of the results of Sections 1 and 2, and rely on an energy crite-
rion to obtain general conditions on stability, again restricting our-
selves to the class of helical and straight solutions.
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4. Equilibrium and stability for an extensible rod.

Let us call trivial. any straight solution of the boundary value prob-
lem (2.10), (2.12). In order to study the class of nontrivial solutions in a
neighborhood of a trivial one (and even to define this neighborhood),
we introduce the perturbation variables vi, v’ which appear in the fol-
lowing representation formulae:

(4.1) gives the vector r and d~ in terms of the corresponding vectors r*
and d * rJ. in the trivial configuration, as suggested elsewhere, for shell
problems, by J. Ericksen.

The perturbation variables v i, va are the components of the differ-
ences (r - r*) and (da - in the natural trivial basis ~d *a , r*’}; if
we assign v i and va as regular functions of s, they determine uniquely,
by (4.1), the equation of a configuration as closer to the trivial solution
as smaller we take these variables. We are interested in finding lists of
(v’, vl) corresponding to solutions of the boundary value problem
(2.10), (2.12), i. e., to equilibrium configurations which are close to the
trivial solution. We remark that (4.1) are general enough to encompass
also helices; on the other hand, Antman’s theorems quoted in Section 2
insure the existence of helical solutions.

If we set d3 = r *’, the metric tensor a2h and the connection coeffi-
cients c2~ corresponding to the basis ~di* ~ are given by

Let us introduce the (constant) extension A at the trivial solution
and assume d« to be orthonormal and r *’ = Ae3 . Then (4.2) be-
come

where is the bidimensional alternating tensor and B is a constant,
representing the twist.

By the assumption of material objectivity, the strain energy density
W can be expressed in terms of the scalar and triple scalar products
constructed with the vector arguments shown in (2.3):
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A slightly simpler form can be given to (4.4), introducing the «covari-
ant» derivative: 

’

and writing

Whenever r and d solve (2.12), the corresponding v and v ia are sol-
utions of the system

Obviously the trivial solution r*, d * corresponds to v m 0, = 0.
All solutions are extremals of the total energy function (2.4); the ex-

istence of such extrema is guaranteed by results recalled in Sec-
tion 2. If the second variation of the total energy E at a trivial solution
is not positive-definite, then a non-trivial solution furnishes E with an
absolute minimum.

As customary, in this situation we term the trivial solution unstable
and the other solution stable. Using the expression (2.3) for W, the sec-
ond variation of E at the trivial solution is given by:

(here the subscripts on W denote the corresponding partial derivatives
evaluated at the trivial solution).

It seems natural to choose: = r’ - r *’ = d - = d ’ -
- Thus, by means of representations (4.1) and (4.4’), the second
variation of the total energy is

Again, we denote derivatives of W, with respect to its variables, evalu-
ated at the trivial solution, by subscripts, namely: WZh =

etc.
For our purpose we can choose for v and v ia the corresponding sol-

utions of the problem linearized about the trivial solution. The actual
perturbation variables and their derivatives are known functions of s;
in principle, we can integrate the right-hand side of (4.7), arriving at an



86

. expression for depending on the constitutive and geometrical prop-
erties of the rod. Hence the stability of the trivial solution will depend
on the sign of a2 E . 

iWe remark that in the Kirchhoff case the variables via are not
completely free, because they must satisfy the constraint conditions:
da . that read:

still the independent unknowns are six, as remarked in Section 2.
In order to obtain solutions in the case linearized about the trivial

solution, we must solve the system (4.5) with a strain energy function
(elastic potential) that depends quadratically on its arguments. In
other words, we expand the function W of (4.4’) in a neighborhood of
viis = 0, Via = 0, Vials = 0 (corresponding to the straight configuration),
truncate the expansion at the second order terms, and use the equilib-
rium equations to be left with a quadratic approximation of W.

We can have different explicit forms for the quadratic approxima-
tion of W, depending on the prevailing requirements of material sym-
metry. Material symmetries determine the relevant material moduli,
and may simplify the expression for W, as shown in the next section.
Moreover, material symmetries may simplify the right-hand side in the
expression (4.7) of the second variation 

5. Helical stability.

In this section we restrict ourselves to the case of helical solutions of
the equilibrium equations. We know from previous sections that there
exist straight (trivial) and helical deformations which are solutions of
the boundary value problem (2.12). Now we wish to discuss the relative
stability of such equilibrium configurations, according to the definition
of stability given above and using the results of Section 4.

Let us consider an undeformed straight rod, characterized by the
vector functions

Another configuration of the rod can be expressed in terms of perturb-
ing variables ~c i, U ia as follows:

In order to compare a helical solution with the trivial solution, we
take variables in (4.1) to be differences between the values of the vari-



87

ables appearing in (5.2) for the two deformations. The trivial solution
can be explicitly written as

where is a rotation matrix, formally given by

such that RB (s) e3 = e3 , and consequently, aRB (S)ICS = BRB (s) e3 x . If
we denote with capital letters the variables in (5.2) corresponding to
this solution, we easily find:

where are the elements of RB (s). We point out that (5.4)3 , or equiv-
alently U = R - 1, implies UUT + U + UT = 0, that is, just the or-

thonormality condition d*a · d *B = 8af3.
The helical solution, with radius p, pitch b, extension a, is given

by

where: Da = da (s = 0). The par-
ameter a is the extension of the helix with respect to its axis; a is relat-
ed to the stretch r’ ~ r’ - ~ by ~2 = a 2 + b 2 p2 ; if the rod is inextensible,
~ = 1; if p « 1 and b is not very large, then ~ = a.

By comparison of (5.5) with (5.2), we have

where d ia = i and are the elements of Rb . It follows that the
variables introduced in (4.1 ) can be written as the differences

We remark that the scalar products dia are to be considered as known
quantities once we are given a helical solution: they are obviously relat-
ed with the Euler angles 0, ~, ~ used by Love and Antman.

The problem of finding a minimizer of the total energy different
from the trivial solution is now reduced to the problem of finding a min-
imizer in the class of helical solutions, in a neighborhood of the trivial
one, i.e., with small variables (5.7). In view of (5.7), the strain energy
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density becomes

in other words, W is the restriction to helices of the function W. The pa-
rameters a, b, p of helical solutions of the equilibrium problem must
satisfy the following conditions:

These formulae give us the loads in terms of the parameters of the
helix:

conversely, if certain invertibility conditions (not investigated here)
are satisfied, these parameters can be expressed in terms of loads:

As a criterion for stability, we inspect the sign of the second variation
(4.7) of the total strain energy, when use is made of (5.7). In this case,
a2E becomes a function of (a, b, p; A, B, 1) and some constitutive param-
eters. Through (5.11) we can_ enter the loads in the expression of a2 E
and call critical the values F and M such that M, ...) = 0.
We are aware that our present notion of criticality is different, and

somewhat more vague, than the usual notion, where a critical load is
meant to be the value of the path parameter at which an equilibrium
path bifurcates.

In order to obtain explicit results, we restrict our attention to par-
ticular cases.

Let us impose periodical boundary conditions, requiring b = B =
= 27r/~. Thus, the rod forms one complete turn of the helix (in the trivial
case the cross-section makes a complete turn around the e3-axis); the
longer the rod, the smaller b. In addition, the helices are chosen to be
near the trivial solution, i.e., p is small as well as the angle between d3
and e3 (recall that d3 = d1 x d2); this implies that also is small.
These assumptions are equivalent to the assumption that v i, via are
small; they have been already introduced in Section 3, together with a
very simple strain energy density, in order to obtain the classical re-
sults in the inextensible case.

Let us now allow the extensibility and, moreover, assume that the
strain energy function is invariant under the change:
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a condition slightly stronger than transverse isotropy, used by Co-
hen [10]. The quadratic approximation of the elastic potential is

or, in terms of the helical parameters:

As b = B, Rb = RB = R. In (5.12) and (5.12’) we have taken into account
the symmetry assumptions, the expression (5.7), the smallness of b (as
it is appropriate for a long rod); moreover, are given by (4.3) and
the are generalized elastic moduli.

The equilibrium conditions become

The values d ia are constant on each helical solution. If the rod is

inextensible: a - A = 1 - (4~ /l2 ) p2 - 1.
Thus, we can find values p1, p2, a - A which, by substitution in

(5.7), give us v i and Virx as solutions of the linearized problem, with

The required material symmetries force aW/ad l , aWlad2 and 
(for any vector function ~ entering W) to be odd functions of dl , d2 and

respectively. Thus (4.7) reads
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and, by (5.12):

Here 0 depends also on the values of the second derivatives of W evalu-
ated at the trivial solution; therefore, 0 depends in general on material
and geometrical properties reflected into such a solution. Using (5.11),
0 becomes a well-defined function of F, M, 1 and the material con-
stants. A trivial solution is stable whenever 0 &#x3E; 0; a helical solution
close to the straight configuration is stable whenever 4l  0; the «criti-
cal» loads are the values F, M which make the function 0 to vanish
(provided that 0 changes its sign at these values).

Had we considered transversely isotropic rods, we would have ob-
tained completely analogous results; also, strain energy functions of
the type proposed by Ericksen [5] could be constructed in terms of
variables (5.7), but we choose to stop our analysis here.

AckonwLedgments. The research reported in this paper was sup-
ported by a grant of the M.U.R.S.T. (Fondo 40%, «Termomeccanica
dei continui classici e con struttura»).

REFERENCES

[1] S. S. ANTMAN, Nonuniqueness of equilibrium states for bars in tension, J.
Math. Anal. Appl., 44, 2 (1973), p. 333.

[2] S. S. ANTMAN, Kirchhoff’s problem for nonlinearly elastic rods, Quart.
Appl. Math., 32, 3 (1974), p. 221.

[3] S. S. ANTMANN - C. S. KENNEY, Large buckled states of nonlinearly elastic
rods under torsion, thrust and gravity, Arch. Ratl. Mech. Anal., 76 (1981),
p. 289.

[4] J. L. ERICKSEN, Simpler static problems in nonlinear theories of rods, Intl.
J. Solids Structures, 6 (1970), p. 371.

[5] J. L. ERICKSEN, Bending a prism of helical form, Arch. Ratl. Mech. Anal.,
66 (1977), p. 1.

[6] J. L. ERICKSEN, Special Topics in Elastostatics, Advances in Applied Me-
chanics, Vol. 17, Academic Press (1977), p. 189.



91

[7] A. G. GREENHILL, On the strength of shafting when exposed both to torsion
and to end thrust, Proc. Inst. Mech. Eng. (1883).

[8] A. E. H. LovE, A Treatise on the Mathematical Theory of Elasticity, 4th
ed., Cambridge Univ. Press (1927) (reprinted by Dover Publ., New York
(1944)).

[9] F. PASTRONE, Sulla stabilità nelle verghe iperelastiche, Atti Accad. Sci.
Torino, 114 (1980).

[10] H. COHEN - A. B. WHITMAN, Waves in elastic rods, J. Sound Vibrn., 51 (2)
(1977), p. 283.

Manoscritto pervenuto in redazione il 6 novembre 1990.


