@article{RSMUP_1992__88__83_0, author = {Citti, Giovanna}, title = {On the exterior {Dirichlet} problem for $\Delta u - u + f( x, u) = 0$}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {83--110}, publisher = {Seminario Matematico of the University of Padua}, volume = {88}, year = {1992}, zbl = {0803.35050}, mrnumber = {1209117}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1992__88__83_0/} }
TY - JOUR AU - Citti, Giovanna TI - On the exterior Dirichlet problem for $\Delta u - u + f( x, u) = 0$ JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1992 SP - 83 EP - 110 VL - 88 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1992__88__83_0/ LA - en ID - RSMUP_1992__88__83_0 ER -
%0 Journal Article %A Citti, Giovanna %T On the exterior Dirichlet problem for $\Delta u - u + f( x, u) = 0$ %J Rendiconti del Seminario Matematico della Università di Padova %D 1992 %P 83-110 %V 88 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1992__88__83_0/ %G en %F RSMUP_1992__88__83_0
Citti, Giovanna. On the exterior Dirichlet problem for $\Delta u - u + f( x, u) = 0$. Rendiconti del Seminario Matematico della Università di Padova, Tome 88 (1992), pp. 83-110. http://archive.numdam.org/item/RSMUP_1992__88__83_0/
[1] L. LIONS, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), pp. 313-346. | MR | Zbl
- P.[2] Ground states of - Δu = f(u) and the Emden-Fowler equation, Arch. Rational Mech. Anal., 93 (1986), pp. 103-127. | Zbl
- ,[3] W. M. NI, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), pp. 283-308. | MR | Zbl
-[4] The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. I. H. P. Anal. non linéaire, v. 1, n. 2 (1984), pp. 109-145. | Numdam | MR
,[5] The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. I. H. P. Anal. non linéaire, v. 1, n. 4 (1984), pp. 223-283. | Numdam | MR | Zbl
,[6] G. CERAMI, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 94 (1987), pp. 283-300. | MR | Zbl
-[7] On positive solutions of semilinear elliptic equations in unbounded domains, in Nonlinear Diffusion Equations and Their Equilibrium States II (W. M. NI, L. A. PELETIER and J. SERRIN, Eds.), Springer-Verlag, New York/ Berlin, 1988, pp. 85-121. | MR | Zbl
,[8] Uniqueness of positive solutions of Δu - u + up = 0 in Rn, Arch. Rational Mech. Anal., 105 (1989), pp. 243-266. | Zbl
,[9] On the existence of a positive solution of semilinear elliptic equations in unbounded domains, to appear. | Numdam | MR | Zbl
- ,[10] Superlinear elliptic Dirichlet problems in almost spherically symmetric exterior domains, Arch. Rational Mech. Anal., 96 (1986), pp. 167-197. | MR | Zbl
- ,[11] Uniqueness of the positive solution of Δu + f(u) = 0, preprint MCS-P117-1289.
- ,[12] Uniqueness of positive radial sotutions of Δu + f(u) = 0 in Rn, Arch. Rational Mech. Anal., 99 (1987), pp. 115-145. | Zbl
- ,[13] Symmetry of positive solutions of nonlinear elliptic equations in Rn, Adv. Math. Suppl. Stud., 7-A, Math. Anal. Appl. Part A (1981), pp. 369-402. | Zbl
- - ,[14] Concentration compactness principle and quasilinear elliptic equations in Rn, Comm. part. diff. Equations, 16, 11 (1991), pp. 1795-1818. | MR | Zbl
- ,