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A Collar Neighborhood Theorem
for a Complex Manifold.

C. DENSON HILL - MAURO NACINOVICH (*)

SUMMARY - For a real paracompact smooth manifold D with smooth boundary M
the collar neighborhood theorem is well known. But for an intrinsically de-
fined complex manifold D with a smooth boundary M, there is no such anal-
ogous theorem (see [7], [8]). This is closely related to the failure, in general,
of the Newlander-Nirenberg theorem up-to-the boundary (see [9], [10]);
which can occur in the presence of some pseudoconcavity of M. However the
up-to-the boundary version of the Newlander-Nirenberg theorem is valid if
the boundary M is strictly pseudoconvex (see [5]), or even when M is weakly
pseudoconvex (see [3]). This is of course a local result near a boundary point
p E M. Thus the question arises as to when these local extensions, of the com-
plex structure of D across M, can be pieced together to give a global collar
neighborhood whose complex structure is an extension of the complex struc-
ture from D. We show here that it can be done when the boundary M is
strictly pseudoconvex. When dimc D = 1, there is no condition at all required
on M. Of course when D is a real analytic manifold with real analytic bound-
ary M, and the integrable almost complex structure on D is also real analytic
up-tp-the boundary M, then the collar neighborhood exists without any as-
sumption about the Levi convexity of M. This follows by the identity theo-
rem from complex analysis.

1. Existence of the collar neighborhood.

Let S~ be a paracompact (i. e. countable at infinity) smooth manifold
of dimension 2n, n ~ 2, and let D be an open domain in S~, with a
smooth boundary M = bD.

(*) Indirizzo degli AA.: C. D. Hill: Department of Mathematics, SUNY at
Stony Brook, Stony Brook, NY 11794 (USA); M. Nacinovich: Dipartimento di
Matematica dell’UniversitA, via Buonaroti 2, 56100 Pisa (Italia).
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We assume tht M is a closed connected differentiable real submani-
fold of Q, of dimension 2n - 1 and countable at infinity.

Let Jo : TQ be a smooth almost complex structure on Q, for-
mally integrable on D. Then we have the following.

THEOREM 1. Assume that M = bD is strictly pseudoconvex for the
structure Jo . Then we can find an open submanifold W of 0, containing
D, and a complex structure J: such that = Jo D.

PROOF. The statement follows by an argument which uses Zorn’s
lemma and the local Newlander-Nirenberg theorem up-to-the bound-
ary (see [5), [3]).
We introduce the family Y- of pairs (X, J), where X is an open sub-

manifold of 0 containing D, and J: TX --~ TX an integrable almost com-
plex structure on X such that J ~ D = Jo D. As (D, Jo I D) E X, the family
ae is non-empty.

0n £ we define an equivalence relation by setting

iff

(ii) there is an open neighborhood Gx¡, X2 of Xl fl M = x2n M in
Q such that = J2 x2 . 

’

We denote by 1 the quotient Xl- and by [X, J] the equivalence
class of (X, J ) E ~ in 1.

In X we define an order relation  by setting

iff:

(b) Jl and J2 agree on an open neighborhood GX¡,X2 of Xl n M in’

We want to show that t is inductive; i. e. that every chain in 1 has

an upper bound in X. Le e be a chain in t for the ordering -. If e is fi-
nite, it has a maximum, which is therefore a majorant of e. Assume
now that e is infinite. Let
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This is an open subset of M. Let W be a countable open

covering in Q of Mo which is locally finite, and with Wv compact for
every v, and w, fl M c Mo . We define by recurrence

Fcr

we have

To construct a majorant for the chain e we proceed in the following
way. We set

We note that Uk is a compact subset of Mo for every 1~ and then we can
find Ji ) with [Xl, Ji ] such that

Let vo c Wo n X, be an open neighborhood of Uo in Q and let us set w1 =
= D U Vo’ We define an integrable almost complex structure on m 1 by
Ji : Tmi being the restriction of JI to D U Vo c X1.

Next we choose (X2, X2 ) E ~ with [X2, and [Xl, Ji]  [X2, J2]
such that

By point (b) in the definition of the order relation, we can find an
open neighborhood Gxl, x2 of Xl fl M in G such that Gxl, x2 c Xl n X2 and
J1 lGX1,X2 = J2 lGX1, X2.

Then we can find an open neighborhood V1 of U1 in Wl rl Gx¡, X2. We
set W2 = w1 U V, and we can define on w2 an integrable almost complex
structure J 2 : TOJ2 -TOJ 2 by J21 WI and X2 VI = J2 ( Vl 

By recurrence we prove the following: for every v we can find



26

(a) an open neighborhood V, of Uv in Wv ;
an element (Xv, Jv ) e 36 with [Xv, E e, such that

lXv- I Jv-1] ~ 

( y) an open neighborhood of in on

which J-i = J, such that

Because Vv f1 Vv+j = 0 for j &#x3E; 2, if we set

and we define J: TX - TX by

we obtain an integrable almost complex structure on X.

We have (X, J ) e X, X f1 M = Mo and for each [ Y, Jy] E e, the struc-
tures J and Jy agree by construction on a neighborhood of Y n M.

Hence [X, J] is a majorant of e.
By Zorn’s lemma, 1 contains a maximal element J]. We need to

prove that co D M.

Let Mo = w fl M and suppose to the contrary, that Mo # M. Let
p : ~ -~ R be a defining function for D in S~, i. e. we assume that p  0 on

D, p = 0 on M, dp~0 on M and p &#x3E; 0 
be a partition of unity on a neighborhood of Mo in to, with

0, and supp 9, compact for every v. Then, for a suitable choice of a
sequence {Ev} of positive real numbers,

is an open neighborhood of D in ~, with Mo c D and bD smooth and
strictly pseudoconvex for the extension of the integrable almost com-

plex structure J to D .
It p E M - Mo , then p is a boundary point of D and then, by the

Newlander-Nirenberg theorem up to the boundary, we can find an
open submanifold B of ~, containing D U {p}, on which a complex
structure J’ is defined, extending the complex structure J on 15. But
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then [c~, J ] = [D ,  [B, J’] and this gives a contradiction to the
fact that J] was maximal in 1. Therefore and the proof is
complete.

2. Remarks.

1) When dimc D = 1, so dimR M = 1, one can take any smooth ex-
tension J_of the almost complex structure Jo D some open neighbor-
hood m J D . This J is then a complex structure on w since there is no for-
mal integrability requirement in complex dimenson one. Thus Theo-
rem 1 holds without any condition on M.

2) Suppose dimc D ~ 2 and, instead of assuming that M is strictly
pseudoconvex, we assume that at every point of M the Levi form has at
least one negative eigenvalue. Then we cannot appeal to the up-to-the
boundary version of the Newlander-Nirenberg theorem, because there
are known counterexamples (see [8]). So let us assume instead that M is
locally embeddable at each point. The existence of a collar neighbor-
hood (co, J ) of (D, Jo D), as in Theorem 1, then follows by a result of
Dwilewicz [4].

3) In fact, we can do away with the global hypothesis that M be
the abstract boundary of a complex manifold D, as in Theorem 1, and
replace it by a microlocal hypothesis: let M be a smooth paracompact
(i.e. countable at infinity) abstract strictly pseudoconvex CR manifold
(of hypersurface type). Consider the following condition:

(A) For every p on M, the given CR structure on M has a local
extension to the germ of a complex structure on the pseudoconvex side
of M. Here the extension is intended in the sense of an abstract bound-

ary ; i.e., there is a local smooth integrable almost complex structure
which extends the CR structure to the pseudoconvex side near each
point.

We ask the question: does M have a global embedding as a closed
CR hypersurface in some open complex manifold X? Assume M has a
real dimension 2n - 1 with n &#x3E; 1.

THEOREM 2. M has such a global embedding if and only if the mi-
croLocaL condition (A) is satisfied.

PROOF. The condition is obviously necessary. To show it is also suf-
ficient, first note that by the Newlander-Nirenberg result up to the



28

boundary (see Hanges-Jacobowitz [5]), we have that M is locally em-
beddable at each point. Hence we have the Hans Lewy local extension
of CR functions to the pseudoconvex side of M. If follows that the local
extensions of the CR structure piece together, in effect, producing our
D from Theorem 1. Rather than go into details, we refer the reader to
Dwilewicz [4], where this type of argument is treated very explicitly.
Then we apply our Theorem 1.

4) Going back to the situation of section 1, suppose that our
strictly pseudoconvex M is compact, and forms the abstract boundary
of an open Stein manifold D. Then it follows from the work of An-
dreotti and Grauert [1] that D has a Stein neighborhood in the collar. A
related result, for the case where the boundary M of D is assumed in
the concrete sense, was found by Heunemann [6]. Let us for conve-
nience now take dim M = 2n + 1 with n &#x3E; 0. We may then apply the
well-known results (see Narasimhan [11] and Bishop [2]) and conclude
that M has a global closed CR embedding in C2n+3 and a global closed
CR immersion in c2n+2. But this does not give the best result. Indeed
we have

THEOREM 3. Let M be a smooth compact stricly pseudoconvex CR
manifold (of hypersurface type) with dim M = 2n + 1, n &#x3E; 1. Then

(n ~ 2): M has a global closed CR embedding in C2n+2 and a glob-
al closed CR immersion in 

(n = I): M3 has a global closed CR embedding in C4 and a global
closed CR immersion in C3 provided that M3 forms the abstract bound-
ary of an open Stein surface D 2 .

PROOF. When dim M ~ 5, it follows by the theorem of Boutet de
Monvel (*) that M has a global closed CR embedding in Cn , for some N.
When dim M ~ 3, we get such an embedding into C’ by using the re-
mark just before Theorem 3. So in any case we get an embedding in CN ,
for some N. It then suffices to take a generically chosen holomorphic
projection into C2n+2 or For further details, see the more general
Proposition at the end of Hill-Nacinovich (**).

(*) L. Boutet de Monvel, Integration des 6quations de Cauchy-Riemann
induites fornlelles, Sem. Goulaouic-Lions-Schwartz, 9 (1975).

(**) Hill-Nacinovich, The Topology of Stein CR Manifolds and the Lefschetz
Theorem, Ann. Inst. Fourier, Grenoble, 43, 2 (1993), pp. 459-468.
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3. On the non-uniqueness of the collar neighborhood.

Let us first consider the case n = 1. On C - [1, oo] we denote by
«(z) the branch of with positive real part. 

_

Then we consider on the closed unit disc D = { ~ z ~ ~ 1 ~ the
function

For every A E C this defines a Whitney function on the closed disc. For
I A I large it is a biholomorphism of the open disc D onto an open domain
G of C. By Whitney’s theorem, for large A, p extends to a diffeomor_-
phism p of a neighborhood U of D in C onto a neighborhood V of G
in C.

Then we consider the two complex structures on U defined by the
single coordinate patch ( U, z) and (!7, ~(2:)) respectively. We claim that
the two structures do not agree on any neighborhook of 1, while they
obviously agree on the open disc D and hence on D. Indeed, p I D is holo-
morphic on D for both structures, but has no analytic extension beyond
1 for the first one, as would then extend to a non-zero analytic
function flat at 1. It obviously extends for the second structure, being
the restriction to D of the coordinate function.

We can now easily construct examples of non-uniqueness in several
variables. If n &#x3E; 1, denoting by el the vector (1, 0, ... , 0 ) in Cn , we
consider ]  1/2}. With  1} and
U, ~ as above we realize that the two structures defined on the

neighborhood D = U x by the single coordinate patch
(0, z 1, ... , and (tJ, p(2:~), z 2 , ... , respectively cannot possibly
agree on an open neighborhood of el.
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