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Meromorphic Starlike Functions of Order 03B1

with Alternating Coefficients.

M. K. AOUF - H. M. HOSSEN (*)

ABSTRACT - Coefficient inequalities, distortion theorems and class preserving
integral operators are obtained for meromorphic functions with alternating
coefficients that are starlike of order «, 0 ~ «  1.

1. Introduction.

Let £ denote the class of functions of the form

which are regular in the punctured disc ~7*=={~:0~1}. The
Hadamard product or convolution of two functions f, g will be de-
noted by f * g. Let

where

(*) Indirizzo degli AA.: Department of Mathematics, Faculty of Science,
University of Mansoura, Mansoura, Egypt.
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In [1] the authors obtained a new criterion for meromorphic starlike
functions of order a(0 K «  1) via the basic inclution relationship

... ~, where
is the class consisting of functions in 2: satisfying

The condition (1.4) is equivalent to

regular, and
or equivalently,

We note that Mo ( a ) _ ~ * ( « ), is the class of meromorphically star-
like functions of order a ( 0 ~ a  1 ) and Mo ( o ) _ ~ * , is the class of

meromorphically starlike functions. The class Mn ( o ) = Mn was intro-
duced by Ganigi and Uralegaddi [2].

Let ~A be the subclass of Z which consisting of functions of the
form

and let n) = Mn (a) f1 vA .
In this paper coefficient inequalities, distortion theorems for the

class vA (a, %) are determined. Techniques used are similar to these
of Silverman [3] and Uralegaddi and Ganigi [4]. Finally, the class
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preserving integral operators of the form

is considered.

2. Coefficient inequalities.

THEOREM 1. Let

then f (z) E Mn (a).

PROOF. Suppose (2.1) holds for all admissible values of a and n. It
suffices to show that

We have
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The last expression is bounded above by 1, provided

which is equivalent to

which is true by hypothesis.
For functions in o-A (a, n) the converse of the above theorem is also

true.

THEOREM 2. A function f ( z ) in aA is in n ) if and only if

PROOF. In view of Theorem 1 it suffices to show the only if part.
Suppose that

Choose values of z on the real axis so that I is real. Up-
B 

- 

I

on clearing the denominator in (2.3) and letting z ~ -1 through real
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values, we obtain

which is equivalent to

This completes the proof of Theorem 2.

COROLLARY 1. If f (z) E aÂ (a, n), then

Equality holds for the functions of the form

3. Distortion theorems.

THEOREM 3. If

, then for (

with equality for the function
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PROOF. Suppose f (z) is in J£ («, %). In view of Theorem 2, we
have

which evidently yields

Consequently, we obtain

Also

Hence the results of (3.1) follow.

THEOREM 4. If

, then for

The result is sharp, the extremal function being of the form (3.2).
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PROOF. From Theorem 2, we have

which evidently yields

Consequently, we obtain

Also

This completes the proof of Theorem 4.

Putting n = 0 in Theorem 4, we get.
m

The result is sharp.

We observe that our result in Corollary 2 improves the result of
Uralegaddi and Ganigi [4, Theorem 3 (Equation 4)].
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4. Class preserving integral operators.

In this section we consider the class preserving integral operators
of the form (1.6).

THEOREM 5. If

belongs to ~A (f3(a, n, c), n), where

The result is sharp for

PROOF. Suppose f ( z ) E ( «, n ), then

In view of Theorem 2 we shall find the largest value of p for
which

It is sufficient to find the range of values of p for which
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solving the above inequality for ~3 we obtain

For each a and c fixed let

F(k) =

Then

where

and

Hence F(k) is an increasing function of 1~. Since

the result follows.

REMARK. Putting n = 0 in the above theorems, we have the re-
sults obtained by Uralegaddi and Ganigi [4].

Acknowledgements. The authors would like to thank the referee of
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