On p-groups with abelian automorphism group
Rendiconti del Seminario Matematico della Università di Padova, Tome 92 (1994), pp. 47-58.
@article{RSMUP_1994__92__47_0,
     author = {Morigi, Marta},
     title = {On $p$-groups with abelian automorphism group},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {47--58},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {92},
     year = {1994},
     mrnumber = {1320477},
     zbl = {0829.20028},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1994__92__47_0/}
}
TY  - JOUR
AU  - Morigi, Marta
TI  - On $p$-groups with abelian automorphism group
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1994
SP  - 47
EP  - 58
VL  - 92
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1994__92__47_0/
LA  - en
ID  - RSMUP_1994__92__47_0
ER  - 
%0 Journal Article
%A Morigi, Marta
%T On $p$-groups with abelian automorphism group
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1994
%P 47-58
%V 92
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1994__92__47_0/
%G en
%F RSMUP_1994__92__47_0
Morigi, Marta. On $p$-groups with abelian automorphism group. Rendiconti del Seminario Matematico della Università di Padova, Tome 92 (1994), pp. 47-58. http://archive.numdam.org/item/RSMUP_1994__92__47_0/

[1] B.E. Earnley, On finite groups whose group of automorphisms is abelian, Ph.D. thesis, Wayne State University (1975), Dissertation Abstracts, V. 36, p. 2269 B.

[2] H. Heineken - H. Liebeck, The occurrence of finite groups in the automorphism group of nilpotent groups of class 2, Arch. Math., 25 (1974), pp. 8-16. | MR | Zbl

[3] B. Huppert, Endliche Gruppen I, Springer-Verlag, New York (1967). | MR | Zbl

[4] D. Jonah - M. Konvisser, Some non-abelian p-groups with abelian automorphism groups, Arch. Math., 26 (1975), pp. 131-133. | MR | Zbl

[5] G.A. Miller, A non-abelian group whose group of isomorphisms is abelian, Messenger Math., 43 (1913), pp. 124-125. | JFM

[6] P.R. Sanders, The central automorphisms of a finite group, J. London Math. Soc., 44 (1969), pp. 225-228. | MR | Zbl