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Completely Decomposable Pure Subgroups
of Completely Decomposable Abelian Groups.

L. FucHs - G. VILJOEN (*)

When is a pure subgroup of a completely decomposable torsion-free
abelian group again completely decomposable? Though this question
has been the motivation of several articles, the question itself has not
been given due attention in the literature.

Bican[B1] was the first to investigate pure subgroups in completely
decomposable groups; he and Kravchenko[K] considered those com-
pletely decomposable groups in which all pure subgroups were com-
pletely decomposable. Bican[B2] and Kravchenko[K] dealt with the
same question for regular subgroups. Hill and Megibben [HM] pointed
out the interesting fact that a pure subgroup A of a completely decom-
posable group G can only be completely decomposable if it is a separa-
tive subgroup of G (i.e. it is separable in Hill’s sense—this means that
for each g € G there is a countable subset {a, |n < w} of A such that the
characteristics x(g + a,) (# <) form a cofinal subset in the set
{x(g + a)|a e A}).

A general sufficient criterion for the complete decomposability of a
pure subgroup in a completely decomposable group is due to Dugas and
Rangaswamy [DR2]. They proved that if the completely decomposable
group G admits an Axiom-3 family of separative subgroups over a pure
subgroup A and if every countable subset in any subgroup H in this
family is contained in a completely decomposable pure subgroup of H,
then A is completely decomposable. (Note that in this case all the sub-
groups H in the family are completely decomposable.)

(*) Indirizzo degli AA.: L. FucHs: Department of Mathematics, Tulane Uni-
versity, New Orleans, LA 70118, U.S.A.; G. VILJOEN: Department of Mathe-
matics, University of Orange Free State, Bloemfontein 9300, O.F.S., South
Africa.

Financial support to the second author by F.R.D. (C.S.I.R.) and the Univer-
sity of Orange Free State is gratefully acknowledged.
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Our objective here is to establish a necessary and sufficient condi-
tion for a pure subgroup of a completely decomposable group to be
again completely decomposable. The point of departure is the observa-
tion that the Dugas-Rangaswamy condition is parallel to the necessary
and sufficient criterion established in Fuchs[F] for a pure subgroup of
a Butler group (i.e. a By,-group) to be again Butler. As a matter of fact,
the cited sufficient condition in[DR] turns out to be necessary as well.
Dugas-Rangaswamy used so-called A-maps in their proof; instead, we
follow a more direct and simpler approach, utilizing ideas developed by
Bican-Fuchs[BF2], in particular, relative balanced-projective resolu-
tions.

1. A sufficient condition.
We start with a simple lemma; for a proof see e.g.[BF1].

LEMMA 1. Suppose {0 >K—>H,— A,— 0} is a direct system of
balanced-exact sequences (s < k for some ordinal x) where the A, are
torsion-free groups and the comnecting maps ¢,.: A,— A, are monic
(¢ < 7 < k) with Im¢,. purein A.. Then the direct limit of the system is
again balanced-exact. ™

Recall that by an Ry-prebalanced subgroup of a torsion-free group
G is meant a pure subgroup B such that for every pure subgroup A of G
that contains B as a corank 1 subgroup the following holds: the lattice
ideal generated by the types of rank one pure subgroups J in A\ B in
the lattice of all types is countably generated. For a discussion of Ry-
prebalanced subgroups we refer to Bican-Fuchs[BF2].

By an Xyprebalanced chain in a torsion-free group G we mean a
continuous well-ordered ascending chain of X,-prebalanced subgroups
with countable factors from 0 up to the group G.

The following lemma is crucial.

LEMMA 2. Let 0 >K—>G—A—0 be a balanced-exact sequence
of torsion-free groups where A has the property that every countable
subgroup of A can be embedded in a (countable) completely decompos-
able pure subgroup of A. If A is an Ry-prebalanced subgroup of the tor-
sion-free group B with B/A countable, then there is a commutative dia-
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gram with balanced-exact rows

0 K G A 0
| ]
0 K—>H B 0.

ProoF. Since A is R-prebalanced in B and B/A is countable,
by[BF2] we can select a relative balanced-projective resolution
0—>D—*A®C— B— 0 where C is a countable completely decompos-
able group and D is isomorphic to a pure subgroup of C. By hypothesis,
there is a countable completely decomposable pure subgroup X of A
that contains the projection of the image of D to A. Since X @ C is com-
pletely decomposable and the sequence 0 » K-GO C—-ADC—0is
balanced-exact, there is a homomorphism »:X® C— G® C which
gives rise to the commutative upper right square in the diagram

D D
P
0 K Gl ASC —0
0 K H B 0

where H is defined as Coker »|D. The 3 X 3 lemma guarantees that the
bottom row is exact. It is straightforward to check that, moreover, it is
balanced-exact. =

We can now prove a somewhat stronger version of Theorem 2
in[DR]:

THEOREM 3. Suppose that A is a pure subgroup of a completely
decomposable group G. A is completely decomposable if

(i) there is an Xy-prebalanced chain {A,} from A to G with
countable factors;

(ii) for each member A, of the chain, every countable subgroup of
A, can be embedded in a (countable) completely decomposable pure
subgroup of A,.

ProoF. Assume (i) and (ii) are satisfied, and let A =A4,<
<A;<..<A,<..<G be an Xyprebalanced chain from A to G with
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countable factor groups with property (ii). In order to verify that every
balanced-exact sequence 0 > K— B —>A —0 of torsion-free groups
splits, we use Lemma 2 in a straightforward transfinite induction to ob-
tain balanced-exact sequences 0 > K — H,— A, — 0 along with com-
mutative diagrams like (1) (with H, B replaced by H,, A,, respectively)
and commutative diagrams between exact sequences for indices o and
¢ + 1. In view of Lemma 1, at limit ordinals o we obtain balanced-exact
sequences 0 > K — H,— A, — 0, and the limit of the whole system will
be a balanced-exact sequence 0 > K—H — G — 0.

Since G is completely decomposable, this sequence splits. Because
of the commutative diagram between the given balanced-exact se-
quence 0 > K—->B—>A—0 and the limit sequence, the former se-
quence ought to split. ®

It is easily seen that condition (ii) is satisfied if the groups A, are
separable, i.e. finite subsets embed in completely decomposable direct
summands.

2. Necessary and sufficient conditions.

Suppose A is a completely decomposable pure subgroup of the com-
pletely decomposable group B, and let C = B/A. Fix decompositions
A= EBI A;and B = E% B, with rank one summands 4;, B;, and let @, 8

ie je
be the families of summands of the form A, = @ A; and B, = '@p B, for
je

subsets «,8 of I and J, respectively. Then @ (and likewise B) is a
G(Ry)-family in the sense that 1) 0, A € @; 2) @ is closed under unions of
chains; 3) given H € d and a countable subset X of 4, thereisan H' e @
that contains both H and X, and H'/H is countable. Let © be the
G(X,)-family of all pure subgroups in C.

LEMMA 4. Let 0> A — B —*C — 0 be an exact sequence where A
and B are completely decomposable and C is torsion-free. There are
G(Ry)-faomilies @' c @, B' c B and G’ cB such that

)@ ={ANB'|B' s},
i) ' ={¢B'|B' e %'},
(ili) for each B' € B', the sequence 0 > A'=ANB' - B'>*C'=

= ¢B'— 0 is exact.

Proor. By a straightforward back-and-forth argument. m.
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LEMMA 5. Again, let 0 >A—B—*C—0 be an exact sequence
with completely decomposable A, B, and torsion-free C. Suppose B’ is
a summand of B such that A' = AN B’ is a summand of A and C' = ¢B’
is pure in C. Then A + B' is a pure completely decomposable subgroup
of B.

PRrROOF. As a complete inverse image of C', A + B' is pure in B.
We evidently have (A + B')/B' = A/A’' completely decomposable. B’
is a summand of A + B', so A + B’ is likewise completely decompos-
able. = :

We can now state and prove our main result.

THEOREM 6. For a pure subgroup A of a completely decomposable
group B, the following are equivalent:

(a) A is completely decomposable;

(b) there is am Xy-prebalanced chain {A,} from A to B with
countable factor groups such that, for each member A, of the chain,
every countable subgroup of A, can be embedded in a (countable) com-
pletely decomposable pure subgroup of A,;

(c) there is a continuous well-ordered ascending chain of pure
subgroups {A,} from A to B with countable factors such that each
member A, is completely decomposable;

(d) there is a G(Xy)-family of completely decomposable pure sub-
groups of B over A.

ProoF. The implications (d) = (¢) = (b) are trivial, while
(b) = (a) has been proved in Theorem 3. To show that (a) = (d), it
is sufficient to observe that, by the preceding lemma, the subgroups
A + B’ with B' € &' (8’ as in Lemma 4) form a G(X,)-family of the de-
sired kind. =

It is worth while pointing out that it is easy to verify the most rele-
vant part of the last result, viz. the equivalence of conditions (@) and
(c), directly, by utilizing relative balanced-projective resolutions. Evi-
dently, it suffices to show that (a) implies (c). For a pure subgroup A of
the torsion-free group B, there is a relative balanced-projective resolu-
tion 0 > K—>A®C—>B—>0 where C is completely decomposable.
Now, if both A and B are completely decomposable, then this sequence
splits and K is a summand of the completely decomposable group
A X C, so itself completely decomposable. Let X and G be G(X,)-fami-
lies of summands in K and C, respectively. Using standard back-and-
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forth techniques, it is straightforward to construct a well-ordered di-
rect system of splitting exact sequences 0 > K,—-ADC,—A,—-0
(¢ < 7) whose direct limit is 0 - K — A @ C — B — 0, where the sys-
tem is subject to the conditions: 1) K, e X,2) C,€ G,3) A < A, is pure in
B, and 4) A, ., /A, is countable for all « < 7. Then the chain {4,} will
be as desired, since A, is isomorphic to a summand of the completely
decomposable group A @ C, for each ¢ < 7.

As an application, we give a proof for Kravchenko’s theorem (the
proof of Theorem 4 in[DR] is incorrect, since the subgroups S, are not
necessarily balanced).

COROLLARY 7. Let G be a completely decomposable group whose
typset T contains a countable ascending chain t; <t < ... <t,<...
such that

1) for every te T there is an n with t <t,, and
2) the set {teT|t <t,} is inversely well-ordered.

Then every pure subgroup of G is completely decomposable.

ProoF. From the stated conditions it follows at once that every
pure subgroup in G is X,-prebalanced in G; thus (i) in Theorem 3 holds.
Furthermore, Lemma 1 in[K] shows that every pure subgroup of G is
separable. Since countable separable groups are completely decompos-
able, (ii) of Theorem 3 is obviously satisfied. =

Another proof can be given by using Wang’s Theorem 1 in[W].
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