A modal logic of consistency
Rendiconti del Seminario Matematico della Università di Padova, Volume 93  (1995), p. 143-152
@article{RSMUP_1995__93__143_0,
     author = {Brunner, Norbert},
     title = {A modal logic of consistency},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {93},
     year = {1995},
     pages = {143-152},
     zbl = {0839.03035},
     mrnumber = {1354355},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1995__93__143_0}
}
Brunner, N. A modal logic of consistency. Rendiconti del Seminario Matematico della Università di Padova, Volume 93 (1995) , pp. 143-152. http://www.numdam.org/item/RSMUP_1995__93__143_0/

[1] M. Baaz - N. Brunner - K. Svozil, Effective Quantum Observables, e-print 9501018, QUANT-PH@XXX.LANL.GOV.

[2] A. Blass - A. Scedrov, Freyd's Models for the Independence of the Axiom of Choice, Memoirs AMS, 79, Providence (1989). | MR 981957 | Zbl 0687.03031

[3] N. Brunner - J. Rubin, Permutation models and topological groups, Rend. Sem. Mat. Univ. Padova, 76 (1986), pp. 149-161. | Numdam | MR 881566 | Zbl 0622.03037

[4] N. Brunner, The Fraenkel-Mostowski method, revisited, Notre Dame J. Formal Logic, 31 (1990), pp. 64-75. | MR 1043792 | Zbl 0701.03024

[5] P. Cameron, Oligomorphic Permutation Groups, LMS Lecture Notes, 152, Cambridge (1990). | MR 1066691 | Zbl 0813.20002

[6] W. Easton, Powers of regular cardinals, Ann. Math. Logic, 1 (1970), pp. 139-178. | MR 269497 | Zbl 0209.30601

[7] T. Forster, Permutation models in the sense of Rieger-Bernays, Zeitschrift Math. Logik Grundl. Math., 33 (1987), pp. 201-210. | MR 894019 | Zbl 0634.03052

[8] E. Hewitt - K. Ross, Abstract Harmonic Analysis, I, Springer Grundlehren, 115, Berlin (1963). | Zbl 0115.10603

[9] T. Jech, The Axiom of Choice, North-Holland Studies in Logic, 75, Amsterdam (1973). | MR 396271 | Zbl 0259.02051

[10] D. Luce, Dimensionally invariant laws correspond to meaningful qualitative relations, Philosophy of Science, 45 (1978), pp. 81-95.

[11] S. Scroggs, Extensions of the Lewis system S5, J. Symbolic Logic, 16 (1951), pp. 112-120. | MR 42352 | Zbl 0043.00804

[12] R. Solovay, Provability interpretations of modal logic, Israel J. Math., 25 (1976), pp. 287-304. | MR 457153 | Zbl 0352.02019

[13] Y. Suzuki - G. Wilmers, Non-standard models for set theory, in J. BELL et. al. (ed.): Proceedings of the Bertrand Russell Memorial Logic Conference, Leeds (1973), pp. 278-314. | MR 351814