@article{RSMUP_1995__93__177_0, author = {Zannier, U.}, title = {An effective solution of a certain diophantine problem}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {177--183}, publisher = {Seminario Matematico of the University of Padua}, volume = {93}, year = {1995}, mrnumber = {1354357}, zbl = {0837.11058}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1995__93__177_0/} }
TY - JOUR AU - Zannier, U. TI - An effective solution of a certain diophantine problem JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1995 SP - 177 EP - 183 VL - 93 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1995__93__177_0/ LA - en ID - RSMUP_1995__93__177_0 ER -
%0 Journal Article %A Zannier, U. %T An effective solution of a certain diophantine problem %J Rendiconti del Seminario Matematico della Università di Padova %D 1995 %P 177-183 %V 93 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1995__93__177_0/ %G en %F RSMUP_1995__93__177_0
Zannier, U. An effective solution of a certain diophantine problem. Rendiconti del Seminario Matematico della Università di Padova, Tome 93 (1995), pp. 177-183. http://archive.numdam.org/item/RSMUP_1995__93__177_0/
[1] Transcendental Number Theory, Cambridge Univ. Press, Cambridge (1976). | MR | Zbl
,[2] B. DWORK, On second order linear differential equations with algebraic solutions, Amer. J. Math., 101 (1979), pp. 42-75. | MR | Zbl
-[3] Effective analysis of a new class of Diophantine equations (Russian), Vestsi Akad. Navuk BSSR, Ser. Fiz.-Math. Navuk, (1988), no. 3, pp. 111-115 (Math. Rew. 89i:11038). | MR | Zbl
, (BILU)[4] Construction of rational functions on a curve, Proc. Camb. Phil. Soc., 68 (1970), pp. 105-123. | MR | Zbl
,[5] Fields containing values of algebraic functions (3), Annali Sc. Norm. Sup. Cl. Sci. Serie IV, Vol. XXI, Fasc. 3 (1994). | Numdam | MR | Zbl
- ,[6] Fundamentals of Diophantine Geometry, Springer-Verlag (1983). | MR | Zbl
,