@article{RSMUP_1995__94__137_0, author = {Birindelli, Isabeau and Cutr{\`\i}, Alessandra}, title = {A semi-linear problem for the {Heisenberg} laplacian}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {137--153}, publisher = {Seminario Matematico of the University of Padua}, volume = {94}, year = {1995}, mrnumber = {1370909}, zbl = {0858.35040}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1995__94__137_0/} }
TY - JOUR AU - Birindelli, Isabeau AU - Cutrì, Alessandra TI - A semi-linear problem for the Heisenberg laplacian JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1995 SP - 137 EP - 153 VL - 94 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1995__94__137_0/ LA - en ID - RSMUP_1995__94__137_0 ER -
%0 Journal Article %A Birindelli, Isabeau %A Cutrì, Alessandra %T A semi-linear problem for the Heisenberg laplacian %J Rendiconti del Seminario Matematico della Università di Padova %D 1995 %P 137-153 %V 94 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1995__94__137_0/ %G en %F RSMUP_1995__94__137_0
Birindelli, Isabeau; Cutrì, Alessandra. A semi-linear problem for the Heisenberg laplacian. Rendiconti del Seminario Matematico della Università di Padova, Volume 94 (1995), pp. 137-153. http://archive.numdam.org/item/RSMUP_1995__94__137_0/
[1] On some existence theorems for semilinear elliptic equations, Indiana Univ. Math. Journ., 27, 5 (1978), pp. 779-790. | MR | Zbl
- ,[2] Principe du Maximum, Inégalité de Harnack et unicité du problème de Cauchy pour les operateurs elliptiques dégénérés, Ann. Inst. Fourier Grenobles, 19, 1 (1969), pp. 277-304. | Numdam | MR | Zbl
,[3] Problèmes Elliptiques indéfinis et Théorème de Liouville non-linéaires, C. R. Acad. Sci. Paris, Série I, 317 (1993), pp. 945-950. | MR | Zbl
- - ,[4] Subelliptic estimates and function spaces on nilpotent Lie group, Ark. Mat., 13 (1975), pp. 161-220. | MR | Zbl
,[5] Fondamental solution for subelliptic operators, Bull. Amer. Math. Soc., 79, (1979), pp. 373-376. | MR | Zbl
,[6] Estimates for the ∂h complex and analysis on the Heisenberg Group, Comm. Pure Apll. Math., 27 (1974), pp. 492-522. | Zbl
- ,[7] E. LANCONELLI, Existence and non existence results for semilinear Equations on the Heisenberg Group, Indiana Univ. Math. Journ., 41 (1992), pp. 71-97. | MR | Zbl
-[8] W. M. NI - L. NIRENBERG, Symmetry and related Properties via the Maximum Principle, Commun. Math. Phys., 68 (1979), pp. 209-243. | MR | Zbl
-[9] Hypoelliptic second order differential equations, Acta Math., Uppsala, 119 (1967), pp. 147-171. | MR | Zbl
,[10] The Dirichlet Problem for the Kohn Laplacian on the Heisenberg group, II, J. Funct. Anal., 43 (1981), pp. 224-257. | MR | Zbl
,[11] Subelliptic second order differential operator, Lecture Notes in Math., 1277, Berlin-Heidelberg-New York (1987), pp. 46-77. | MR | Zbl
- ,[12] A symmetry problem in potential theory, Arch. Ration. Mech., 43 (1971), pp. 304-318. | MR | Zbl
,