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Edge-of-the-Wedge Theorem for Elliptic Systems.

ANDREA D’AGNOLO (*)

ABSTRACT - Let M be a real analytic manifold, X a complexification of M, N c M a
submanifold, and Y c X a complexification of N. One denotes by c~M the sheaf
of real analytic functions on M, and by 83M the sheaf of Sato hyperfunctions.
Let m be an elliptic system of linear differential operators on M for which Y
is non-characteristic. Using the language of the microlocal study of sheaves of
[K-S] we give a new proof of a result of Kashiwara-Kawai [K-K] which as-
serts that

where denotes the Sato microlocalization functor. For codmn = 1, the
previous result reduces to the Holmgren’s theorem for hyperfunctions, and
of course in this case the ellipticity assumption is not necessary. For

codM N &#x3E; 1, this implies that the sheaf of analytic (resp. hyperfunction) sol-
utions to satisfies the edge-of-the-wedge theorem for two wedges in M
with edge N. Dropping the ellipticity hypothesis in this higher codimensional
case, we then show how (t) no longer holds for * = aM. In the frame of
tempered distributions, Liess [L] gives an example of constant coefficient
system for which the edge-of-the-wedge theorem is not true. We don’t know
whether (t) holds or not for * = 83M in the non-elliptic case.

1. Notations and statement of the result.

1.1. Let X be a real analytic manifold and N c M c X real analytic
submanifolds. One denotes by a: T * X ~ X the cotangent bundle to X,
and by T~X the conormal bundle to N in X. The embedding f: M - X
induces a smooth morphism ’fk: 

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Padova, Via
Belzoni 7, 1-35131 Padova.
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Let y c TN X be an open convex cone of the normal bundle TN X. We
denote by y a its antipodal, and by y ° c T» X its polar. For a subset U c X
one denotes by CN ( U) c TNX its normal Whitney cone.

DEFINITION 1.1. An open connected set U c X is called a wedge in
X with profile y if n y = 0. The submanifold N is called the

edge of U. We denote by the family of wedges with profile y.

1.2. Let us recall some notions from [K-S]. Let Db (X) denote the de-
rived category of the category of bounded complexes of sheaves of C-
vector spaces on X. For F an object of Db (X), one denotes by SS(F) its
micro-support, a closed, conic, involutive subset of T * X. One says that
M is non-characteristic for F if SS(F) n TMX c M x x T 1 X. Recall that
in this case, one has f’ F = 0 ormlx [ 

- codxm], where ormlx denotes
the relative orientation sheaf of M in X.

Denote the Sato microlocalization of F along N, an object
of Db(T*NX).

PROPOSITION 1.2. (cf. [K-S, Theorem 4.3.2])

(ii) for y c TNX an open proper convex cone, there is an isomor-
phism for all j e Z:

The main tool of this paper will be the following result on com-
mutation for microlocalization and inverse image due to Kashiwara-
Schapira.

THEOREM 1.3. (cf. [K-S, Corollary 6.7.3]) Assume that M is non-
characteristic for F. Then the natural morphism:

is an isomor~phism.

1.3. We will consider the following geometrical frame.
Let M be a real analytic manifold of dimension n, and let N c M be a

real analytic submanifold of codimension d. Let X be a complexification
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of M, Y c X a complexification of N, and consider the embeddings.

One denotes by ox the sheaf of germs of holomorphic functions on X,
and by 6Dx the sheaf of rings of linear holomorphic differential operators
on X. The sheaf of real analytic functions is denoted by aM. More-
over, one considers the sheaves:

These are the sheaves of Sato’s hyperfunctions and microfunctions
respectively.

Let W be a left coherent DX-module. One says that 3K is non-charac-
teristic for Y if char(M) n TY X c Y x XT* X (here char c T * X de-
notes the characteristic variety of and one denotes by My the in-
duced system on Y, a left coherent (Dy-module. One says that 3K is ellip-
tic if 311 is non-characteristic for M. Recall that in this case, by the fun-
damental theorem of Sato, one has:

1.4. In the next section we will give a new proof of the following the-
orem of Kashiwara and Kawai:

THEOREM 1.4. (cf. [K-K]). be a left coherent elliptic 
ule, non-characteristic for Y. Then

Let us discuss here some corollaries of this result.

1.4.1. Let X be a complex analytic manifold. One denotes by X the
complex conjugate of X, and by X’ the underlying real analytic mani-
fold to X. Identifying XR to the diagonal of X the complex manifold
X x X is a natural complexification of XR.

Let S c XR be a real analytic submanifold (identified to a subset of
X), and let SC c X x X be a complexification of S. Denoting by 3 the
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Cauchy-Riemann system (i.e. a = one has an obvious isomor-

phism 
-

Assume S’ is generic, i.e. Then the embedding
g: x X is non-characteristic for 3 (which is, of course, elliptic)
and hence, combining (1.3) with Theorem 1.4, one recovers the well
known result:

COROLLARY 1.5 Let S c X be a generic submanifold with cod x S = d.
Then

1.4.2 Let us go back to the notations of 1.3, and assume that N is a
hypersurface of M defined by the equation = 0 with d ~ ~ 0. As-
sume that MBN has the two open connected components M ± - ~ x;
± ~ ( x ) &#x3E; 0}. Let 3K = P for an elliptic differential operator P
non-characteristic for Y.

By Theorem 1.4 we then recover the classical Holmgren’s theorem
for hyperfunctions:

COROLLARY 1.6. Let u E ~3M be a solution of Pu = 0 such that

G ) M + =0. Then u=0.

As it is well known, this result remains true even for non elliptic
operators.

1.4.3 Assume now codM N = d &#x3E; 1, and let 3K be a left coherent ellip-
tic DX-module which is non-characteristic for Y. Let y be an open con-
vex proper cone of the normal bundle TN M, and let U E be a wedge
with profile y.

By Proposition 1.2 and Theorem 1.4, one has
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The induced morphism

is called «boundary value morphism» (cf. [S]). Using (1.1), one easily
sees that by is inj ective by analytic continuation.

Let Y I, Y 2 be open convex proper cones of TN M and denote by
~y 1, Y 2) their convex envelope. One deduces the following edge-of-the-
wedge theorem.

COROLLARY 1.7. Let (four i = 1, 2), and let 

83M» with bYl(Ul) = ~2(~2)’ Then there exist a wedge U E
e W(Yl’ Y2) with U J U1 U U2 , and a section u E r(!7; 83M»
such that = ui, u ~ v2 = U2’

PROOF. We will neglect orientation sheaves for simplicity. Notice
that is a section of 
whose support is contained in f1 If y °°‘ n y 2a = {0}, the result
follows by (i) of Proposition 1.2. If n y%~ # ( 0), one remarks that

is precisely the convex envelope of y 1 and Y 2, and
hence by (1.4) there exists a wedge U’ e and a section u e

eF(!7’; = u. Again by analytic continu-
ation, one checks that u extends to an open set with

Q.E.D.

Notice that in the case where one replaces N by M, M by XR, X by
X x X, and M by 8, the boundary value morphism considered above is
the classical:

2. Proof of Theorem 1.4.

Set F = R (9x), the complex of holomorphic solutions to
3K, and consider the natural projections

We shall reduce the proof of Theorem 1.4 to the two following
isomorphisms:
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(2.1) if 3K is an elliptic left coherent ~x-module, one has:

(2.2) if 3ll is a left coherent DX-module non-characteristic for Y, one
has:

In fact, since the restriction of tgN to char n T~X is finite, it follows
from (2.2) that = 0 for j  n + d. The conclusion of Theorem
1.4 then follows by formula (2.1 ).

Let us prove (2.1). By [K-S], Theorem 11.3.3 one has the equality

According to (2.3), 3K is elliptic if and only if M is non-characteristic
for F. One then has the following chain of isomorphisms:

where the second isomorphism follows from Theorem 1.3. This proves
(2.1).

Let us prove (2.2). According to (2.3), Y is non-characteristic for ~ if
and only if Y is non-characteristic for F. One then has the following
chain of isomorphisms:

where the second isomorphism follows from Theorem 1.3, and the
third from the Cauchy-Kowalevski-Kashiwara theorem which as-

serts that, 3K being non-characteristic for Y, R Xomcox (mL, (9x) Y -
= R 

3. Remarks for non-elliptic systems.

As already pointed out, for codM N = 1 Theorem 1.4 reduces to the
Holmgren theorem, and to prove the latter the ellipticity assumption is
not necessary.
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For codM N &#x3E; 1, one may then wonder whether Theorem 1.4 holds or
not if the ellipticity hypothesis is dropped out.

3.1. In the frame of tempered distribution, Liess [L] gives an
example of a differential system with constant coefficients for which
the corresponding Corollary 1.7 does not hold.

3.2. In order to deal with the real analytic case (i.e. * = am in (1.2)),
consider M = R3 with coordinates (t, x2 ), let N be defined by x, =
- x2 = 0, and set X = C3, Y = C X ~ 0 ~. Let 3K be the (non-elliptic) module
associated to the system

which is non-characteristic for Y.
In this case, one has (3K, 0 as implied by the

following:

PROPOSITION 3.1. One has

PROOF. By a change of holomorphic coordinates, 3K is associated to
a system of constant coefficient differential equations on X, and hence
Hi R = 0 for j # 0. It is then enough to find a solution
f E aM (MBN) for N which does not extend analytically to M. This is the
case for

Of course, the function f in (3.1) extends to M as a hyperfunction,
since its domain of holomorphy in X contains a wedge with edge N.

3.3. We don’t know whether Theorem 1.4 holds or not in the frame
of hyperfunctions without the ellipticity assumption. However, note
that Hj RTN RHomDX (3K, = 0 for j  codM N, as implied by the fol-
lowing division theorem (cf. [S-K-K]) of which we give here a sheaf
theoretical proof.

LEMMA 3.2. Assume that Y is non-characteristic for Then
there is an isomor~phism:
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PROOF. We will neglect orientation sheaves for simplicity. Setting
F = R (9x), one has the isomorphisms:

By the Cauchy-Kowalevski-Kashiwara theorem, F) y= R 
and one concludes.
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