RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

LADISLAV BICAN K. M. RANGASWAMY

A result on B_1 -groups

Rendiconti del Seminario Matematico della Università di Padova, tome 94 (1995), p. 95-98

http://www.numdam.org/item?id=RSMUP 1995 94 95 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Result on B_1 -Groups.

LADISLAV BICAN(*) - K.M. RANGASWAMY(**)

We shall work with torsionfree abelian groups H satisfying the condition (iii) in Arnold's paper [A], that means that when localized at any prime p, H becomes completely decomposable and if B is a generalized regular subgroup of H and L is a finite rank pure subgroup of H, then (L+B)/B has a finite number of non-zero p-primary components, only.

In this note we show that a B_1 -group has always this property and correct the proof of Theorem I.a — (ii) \Rightarrow (iii) of Arnold [A]. Our argument also corrects and greatly simplifies the proof of Theorem 3.4 (that a countable B_1 -group is finitely Butler) of Bican-Salce [BS]. Moreover, the proofs of Proposition 9 and Theorem 11 in [BSS] used the same incorrect argument (see the Remark at the and of this note) as in the proof of Theorem 3.4 of [BS] and the proof of Theorem 1 of Dugas [D] assumed the truth of Theorem I.a — (ii) \Rightarrow (iii) of [A]. So their validity is also assured by our proof presented below.

All the groups that we consider are abelian and we refer to [F] for the general notation and terminology. Recall that a torsionfree group G is called a B_1 -group if $\operatorname{Bext}^1(G,T)=0$ for all torsion groups T, where Bext^1 denotes the subfunctor of Ext^1 consisting of all balanced extensions. A subgroup K of a torsionfree group G is said to be generalized regular, if G/K is torsion and for any rank one pure subgroup X of G, the p-component $(X/(X\cap K))_p=0$ for almost all primes p.

^(*) Indirizzo dell'A.: Charles University, 186 00 Praha 8, Czech Republik. The author has been partially supported by the grant GAUK 4S/94 of the Charles University Grant Agency.

^(**) Indirizzo dell'A.: University of Colorado, Colorado Springs, CO 80933-7150, USA.

Theorem Let H be an arbitrary B_1 -group and B a generalized regular subgroup of H. Then for any finite rank pure subgroup L of H, the torsion group (L+B)/B has at most finitely many non-zero p-components.

PROOF. As pointed out by Arnold [A], we can assume, without loss of generality, that H/B is isomorphic to a subgroup of Q/Z, since there is $B \subseteq C \subseteq H$ with H/C isomorphic to a subgroup of Q/Z and, for any prime p, $(H/B)_p = 0$ exactly when $(H/C)_p = 0$. Suppose, by way of contradiction, there is a finite rank pure subgroup L of H with $((L + H)/B)_{p_i} \neq 0$, for infinitely many primes p_i . Without loss of generality, we may assume that $(H/B)_p = 0$ for all prime $p \notin \{p_i \mid i < \omega\}$. Write $H/B = \bigoplus_{i < \omega} Z(p_i^{k_i})$ where $0 < k_i \le \infty$. For each i, choose $x_i \in L$ so that $x_i + B$ generates the p_i -socle of H/B. If $\{h_1, \ldots, h_n\}$ is a maximal independent subset of $L \cap B$, then replacing x_i , if necessary, by an integral multiple of x_i , we could assume that there is an integer $s_i \ge 1$ such that

$$p_i^{s_i} x_i = l_{i1} h_1 + \ldots + l_{in} h_n ,$$

where the l_{ij} are integers. If we use the convention that $\infty + s_i = \infty$ and denote $Z(p_i^{k_i + s_i})$ by C_i , then, for each $i < \omega$, we get an exact sequence

$$0 \to C_i[p_i^{s_i}] \to C_i \xrightarrow{\gamma_i} (H/B)_{p_i} \to 0.$$

Let $C = \bigoplus C_i$. Then $\gamma = \bigoplus \gamma_i$ is an epimorphism from C to H/B. Consider the pull-back diagram

$$0 \longrightarrow T \longrightarrow G \xrightarrow{\varphi} H \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow^{\pi}$$

$$0 \longrightarrow T \longrightarrow C \xrightarrow{\gamma} H/B \longrightarrow 0$$

where $\pi \colon H \to H/B$ is the natural map. We claim that the top row is balanced exact: Suppose R is a rank one group and $\alpha \colon R \to H$ is a homomorphism, with $K = \ker(\pi \alpha)$. Since B is generalized regular, there is an integer n such that $(R/K)_p = 0$, for all primes $p \notin \{p_1, \ldots, p_n\}$. Then the obvious map $R \to R/(p_1^{s_1} p_2^{s_2} \ldots p_n^{s_n} K)$ induces a $\beta \colon R \to C$ such that $\gamma \beta = 1$

 $=\pi\alpha$. By the pull-back property, there exists an $\alpha': R \to G$ satisfying $\varphi\alpha' = \alpha$. This establishes our claim. As H is a B_1 -group, the top row then splits. Let $\delta: H \to G$ be the split map. If we regard $G = \{(c, h) \mid \gamma(c) = \pi(h)\} \subseteq C \oplus H$, then we can write $\delta(h_k) = (y_k, h_k)$, for $k = 1, \ldots, n$, where $y_k \in C$. Since C is torsion, there is an integer m such that $\delta(mh_k) = (0, mh_k)$ for all $k = 1, \ldots, n$. For each $i < \omega$, let $\delta(x_i) = (z_i, x_i)$. From (*) we conclude that

$$(mp_i^{s_i}z_i, mp_i^{s_i}x_i) = \delta(mp_i^{s_i}x_i) = (0, mp_i^{s_i}x_i),$$

so that $mp_i^{s_i}z_i=0$. Since $\gamma(z_i)=\pi(x_i)=x_i+B\neq 0$ we have $z_i\notin\ker(\gamma_i)=C_i[p_i^{s_i}]$. This means that p_i must be a divisor of m. Since there are infinitely many primes p_i , we obtain a contradiction.

REMARK. We wish to justify the statements made at the beginning of this note by pointing out where exactly the inaccuracies have occured in the referenced articles: In [A], it occurs on page 180 at bottom paragraph in the sentence «Since H has finite rank ...». In [BS], in the proof of Theorem 3.4 on page 187, the index s_i on the right side of the equation (9) should be $s_i + 1$ and this leads to the (corrected) conclusion on line 3 from the bottom that p_i divides $p_i \rho \lambda_{ir}$ which does not imply that p_i divides p_i as claimed. To correct the proof of Theorem 3.4 of [BS], just delete the entire part of the proof beginning with the sentence «Finally, the factor group ...»: on line 8 on page 186 and insert the proof of our Theorem. We wish to point out that Theorem 3.4 of [BS] has been derived by different methods in [DR], [FM] and [MV]. The proof of our theorem above was obtained by distilling arguments used by Arnold [A] and by Bican-Salce [BS] and some our arguments are similar to those used in [FM].

REFERENCES

- [A] Arnold D., Notes on Butler groups and balanced extensions, Boll. Un.
 Math. Ital, A(6) 5 (1986), pp. 175-184.
- [BS] BICAN L. SALCE L., *Infinite rank Butler groups*, Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., Springer-Verlag, 1006 (1983), pp. 171-189.
- [BSS] BICAN L. SALCE L. STEPAN J., A characterization of countable Butler groups, Rend. Sem. Mat. Univ. Padova, 74 (1985), pp. 51-58.
- [D] DUGAS M., On some subgroups of infinite rank Butler groups, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 153-161.

- [DR] Dugas M. Rangaswamy K. M., Infinite rank Butler groups, Trans. Amer. Math. Soc., 305 (1988), pp. 129-142.
- [F] Fuchs L., Infinite Abelian groups, vol. I and II, Academic Press, New York (1973) and (1977).
- [FM] Fuchs L. Metelli C., Countable Butler groups, Contemporary Math., 130 (1992), pp. 133-143.
- [MV] MINES R. VINSONHALER C., Butler groups and Bext: A constructive view, Contemporary Math., 130 (1992) pp. 289-299.

Manoscritto pervenuto in redazione il 20 aprile 1994.