@article{RSMUP_1996__95__127_0, author = {Guerra, Lucio}, title = {A universal property of the {Cayley-Chow} space of algebraic cycles}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {127--142}, publisher = {Seminario Matematico of the University of Padua}, volume = {95}, year = {1996}, mrnumber = {1405359}, zbl = {0894.14006}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1996__95__127_0/} }
TY - JOUR AU - Guerra, Lucio TI - A universal property of the Cayley-Chow space of algebraic cycles JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1996 SP - 127 EP - 142 VL - 95 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1996__95__127_0/ LA - en ID - RSMUP_1996__95__127_0 ER -
%0 Journal Article %A Guerra, Lucio %T A universal property of the Cayley-Chow space of algebraic cycles %J Rendiconti del Seminario Matematico della Università di Padova %D 1996 %P 127-142 %V 95 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1996__95__127_0/ %G en %F RSMUP_1996__95__127_0
Guerra, Lucio. A universal property of the Cayley-Chow space of algebraic cycles. Rendiconti del Seminario Matematico della Università di Padova, Tome 95 (1996), pp. 127-142. http://archive.numdam.org/item/RSMUP_1996__95__127_0/
[1] F. NORGUET, La convexité holomorphe dans l'espace analytique des cycles d'une variété algébrique, Ann. Scuola Norm. Sup. Pisa, 21 (1967) pp. 31-82. | EuDML | Numdam | MR | Zbl
-[2] Espace analytique reduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, in Fonctions de plusieurs variables complexes II (Sem. F. Norguet), Springer L.N.M., 482 (1970), pp. 1-158. | MR | Zbl
,[3] Chow varieties, Hilbert schemes, and moduli spaces of surfaces of general type, J. Alg. Geom., 1 (1992), pp. 561-595. | MR | Zbl
,[4] On a new analytical representation of curves in space I, II, Quart. J. Math., 3 (1860), pp. 225-236; 5 (1862), pp. 81-86.
,[5] Zur algebraischen Geometrie, IX: Über zugeordnete Formen und algebraische Systeme von algebraischen Mannigfaltigkeiten, Math. Ann., 113 (1937), pp. 692-704. | EuDML | JFM | MR
- ,[6] Algebraic cycles, Chow varieties, and Lawson homology, Comp. Math., 77 (1991), pp. 55-93. | EuDML | Numdam | MR | Zbl
,[7] A theory of algebraic cocycles, Ann. Math., 136 (1992), pp. 361-428. | MR | Zbl
- ,[8] Intersection Theory, Springer (1984). | MR | Zbl
,[9] Degrees of Cayley-Chow varieties, Math. Nachr., 171 (1995), pp. 165-176. | MR | Zbl
,[10] Methods of Algebraic Geometry, vol. II, Cambridge U.P. (1968).
- ,[11] Algebraic Geometry I, Complex Projective Varieties, Springer (1976). | MR | Zbl
,[12] J. FOGARTY, Geometric Invariant Theory, Springer (1982). | MR | Zbl
-[13] On the normality of the Chow variety of positive 0-cycles of degree m in an algebraic variety, Memoirs Coll. Sci. Kyoto (A), 29 (1955), pp. 165-176. | MR | Zbl
,[14] Lectures on unique factorization domains, Tata Inst. Fund. Research, Bombay (1964). | MR | Zbl
,[15] The Classical Groups, their Invariants and Representations, Princeton U.P. (1946). | MR | Zbl
,