Regular time-optimal syntheses for smooth planar systems
Rendiconti del Seminario Matematico della Università di Padova, Tome 95 (1996), pp. 59-79.
@article{RSMUP_1996__95__59_0,
     author = {Piccoli, Benedetto},
     title = {Regular time-optimal syntheses for smooth planar systems},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {59--79},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {95},
     year = {1996},
     mrnumber = {1405355},
     zbl = {0912.49018},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1996__95__59_0/}
}
TY  - JOUR
AU  - Piccoli, Benedetto
TI  - Regular time-optimal syntheses for smooth planar systems
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1996
SP  - 59
EP  - 79
VL  - 95
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1996__95__59_0/
LA  - en
ID  - RSMUP_1996__95__59_0
ER  - 
%0 Journal Article
%A Piccoli, Benedetto
%T Regular time-optimal syntheses for smooth planar systems
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1996
%P 59-79
%V 95
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1996__95__59_0/
%G en
%F RSMUP_1996__95__59_0
Piccoli, Benedetto. Regular time-optimal syntheses for smooth planar systems. Rendiconti del Seminario Matematico della Università di Padova, Tome 95 (1996), pp. 59-79. http://archive.numdam.org/item/RSMUP_1996__95__59_0/

[1] V.G. Boltyanskii, Sufficient conditions for optimality and the justification of the dynamic programming principle, SIAM J. Control and Opt., 4 (1966), pp. 326-361. | MR | Zbl

[2] P. Brunovsky, Every normal linear system has a regular time-optimal synethesis, Math. Slovaca, 28 (1978), pp. 81-100. | MR | Zbl

[3] P. Brunovsky, Existence of regular synthesis for general problems, J. Diff. Eq., 38 (1980), pp. 317-343. | MR | Zbl

[4] P. Hartman, Ordinary Differential Equations, Wiley, New York (1964). | MR | Zbl

[5] H. Hermes - J.P. Lasalle, Functional Analysis and Time Optimal Control, Academic Press (1969). | MR | Zbl

[6] E.B. Lee - L. MARKUS, Foundations of Optimal Control Theory, Wiley, New York (1967). | MR | Zbl

[7] M.M. Peixoto, Generic properties of ordinary differential equations, in Studies in Ordinary Differentials Equations, J. Hale ed., MAA Studies in Mathematics, No. 14, Washington (1977), pp. 52-92. | MR | Zbl

[8] M.M. Peixoto, On the Classification of Flows on 2-Manifolds, Proceedings of a Symposium Helded at the University of Bahia, Brasil, 1971, M. M. Peixoto ed., Academic Press, New York (1973), pp. 389-420. | MR | Zbl

[9] H.J. Sussmann, Envelopes, conjugate points, and optimal bang-bang extremals, algebraic and geometric methods in nonlinear control theory, M. Fliess and M. Hazewinkel eds., D. Reidel Publishing Company (1986), pp. 325-346. | MR | Zbl

[10] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: the C∞ nonsingular case, SIAM J. Control and Opt., 25 (1987), pp. 433-465. | Zbl

[11] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case, SIAM J. Control and Opt., 25 (1987), pp.868-904. | MR | Zbl

[12] H.J. Sussmann, Regular synthesis for time-optimal control of single-input real-analytic systems in the plane, SIAM J. Control and Opt., 25 (1987), pp. 1145-1162. | MR | Zbl

[13] H.J. Sussmann, Envelopes, Higher-Order Optimality Conditions, and Lie Brackets, Proceedings of the 1989 I.E. E. E. Conference on Decision and Control. | MR

[14] H.J. Sussmann, Synthesis, presynthesis, sufficient conditions for optimality and subanalytic sets, in Nonlinear Controllability and Optimal Control, H. J. Sussmann ed., Marcel Dekker, New York (1990), pp. 1-19. | MR | Zbl