@article{RSMUP_1996__96__143_0, author = {Aguilar Crespo, J. A. and Peral Alonso, I.}, title = {On an elliptic equation with exponential growth}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {143--175}, publisher = {Seminario Matematico of the University of Padua}, volume = {96}, year = {1996}, mrnumber = {1438296}, zbl = {0887.35055}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1996__96__143_0/} }
TY - JOUR AU - Aguilar Crespo, J. A. AU - Peral Alonso, I. TI - On an elliptic equation with exponential growth JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1996 SP - 143 EP - 175 VL - 96 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1996__96__143_0/ LA - en ID - RSMUP_1996__96__143_0 ER -
%0 Journal Article %A Aguilar Crespo, J. A. %A Peral Alonso, I. %T On an elliptic equation with exponential growth %J Rendiconti del Seminario Matematico della Università di Padova %D 1996 %P 143-175 %V 96 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1996__96__143_0/ %G en %F RSMUP_1996__96__143_0
Aguilar Crespo, J. A.; Peral Alonso, I. On an elliptic equation with exponential growth. Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996), pp. 143-175. http://archive.numdam.org/item/RSMUP_1996__96__143_0/
[AR] Dual variational methods in critical point theory and applications, J. Funct. Abal., 14 (1973), pp. 349-381. | MR | Zbl
- ,[An] Simplicite et isolation de la première valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris, Série I, 305 (1987), pp. 725-728. | MR | Zbl
,[Bd] Existence theorems. Qualitative results and a priori bounds for a class of nonlinear Dirichlet problems, Arch. Rational Mech. Anal., 49 (1973), pp. 241-269. | MR | Zbl
,[B1] Remarks on the uniqueness results of the first eigenvalue of the p-laplaccian, Ann. Fac. Science de Toulousse, Serie 5, 1 (1988), pp. 65-75. | Numdam | MR | Zbl
,[Br] Analyse fonctionelle, Masson (1983). | MR | Zbl
,[BPV] Some remarks on the N-Laplacian, preprint.
- - ,[BM] Uniform estimates and blow-up behavior for solutions of - Δu = V(x) eu in two dimensions, Commu. in P.D.E., 16, nn. 8-9 (1992), pp. 1223-1253. | Zbl
- ,[Ch] An Introduction ot the Study of Stellar Structure, Dover Publ. Inc. (1985). | Zbl
,[DiB] C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear analysis. Theory, Methods and Applications, 7, n. 8 (1983), pp. 827-850. | Zbl
,[FK] Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press (1969).
,[F] On the nonlinear equation Δu + exp u = 0 and vt = Δu + + exp u, Bull. A.M.S., 75 (1969), pp. 132-135. | Zbl
,[Ge] Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. (Ser. 2), 29 (1963), pp. 295-381. | MR | Zbl
,[GMP] Quelques résultats sur le problème - Δu = exp u, C. R. Acad. Sci. Paris, 307 (1988), pp. 289-292. | Zbl
- - ,[GP] On a Emden-Fowler type equation, Nonlinear Analysis T.M.A., 18, n. 11 (1992), pp. 1085-1097. | MR | Zbl
- ,[GPP] Quasilinear problems with exponential growth in the reaction term, Nonlinear Analysis T.M.A., 22, n. 4 (1994), pp. 481-498. | MR | Zbl
- - ,[GT] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York (1983). | MR | Zbl
- ,[JL] Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), pp. 241-269. | MR | Zbl
- ,[KW] Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), pp. 14-47. | MR | Zbl
- ,[L] On the equation div(|∇u|p-2∇u) + λ|μ|p-2 = 0, Proc. Amer. Math. Soc., 109, n. 1 (1990), pp. 157-164. | Zbl
,[MP1] Sur une classe de probleme non lineaire avec non linearite positive, crossante, convexe, Communication in P.D.E., 5 (8) (1980), pp. 791-836. | MR | Zbl
- ,[MP2] Solution radiale singuliere de - Δu = λeu, C. R. Acad. Sci. Paris, Série I, 307 (1988), pp. 379-382. | Zbl
- ,[S] Equations Elliptiques du Second Ordre a Coefficients Discontinus, Les Presses de l'Université de Montreal (1965). | MR | Zbl
,