@article{RSMUP_1997__97__163_0, author = {Papageorgiou, Nikolas S. and Papalini, Francesca}, title = {On the structure of the solution set of evolution inclusions with time-dependent subdifferentials}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {163--186}, publisher = {Seminario Matematico of the University of Padua}, volume = {97}, year = {1997}, mrnumber = {1476169}, zbl = {0893.34060}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1997__97__163_0/} }
TY - JOUR AU - Papageorgiou, Nikolas S. AU - Papalini, Francesca TI - On the structure of the solution set of evolution inclusions with time-dependent subdifferentials JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1997 SP - 163 EP - 186 VL - 97 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1997__97__163_0/ LA - en ID - RSMUP_1997__97__163_0 ER -
%0 Journal Article %A Papageorgiou, Nikolas S. %A Papalini, Francesca %T On the structure of the solution set of evolution inclusions with time-dependent subdifferentials %J Rendiconti del Seminario Matematico della Università di Padova %D 1997 %P 163-186 %V 97 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1997__97__163_0/ %G en %F RSMUP_1997__97__163_0
Papageorgiou, Nikolas S.; Papalini, Francesca. On the structure of the solution set of evolution inclusions with time-dependent subdifferentials. Rendiconti del Seminario Matematico della Università di Padova, Tome 97 (1997), pp. 163-186. http://archive.numdam.org/item/RSMUP_1997__97__163_0/
[1] Aronszajn's theorem for a parabolic partial differential equation, Nonl. Anal. T.M.A., 9 (1985), pp. 1183-1188. | MR | Zbl
,[2] Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands (1976). | MR | Zbl
and[3] Extension and selections of maps with decomposable values, Studia Math., 90 (1988), pp. 69-86. | MR | Zbl
- ,[4] Operateurs Maximaux Monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam (1973). | MR | Zbl
,[5] On the set of solution to Lipschitzian differential inclusions, Diff. Integ. Equations, 1 (1988), pp. 495-500. | MR | Zbl
,[6] Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl., 106 (1985), pp. 1-18. | MR | Zbl
,[7] On the solution sets for differential inclusions, Bull. Pol. Acad. Sci., 33 (1985), pp. 17-23. | MR | Zbl
- ,[8] Non-convex valued differential inclusions in Banach spaces, J. Math. Anal. Appl., 157 (1991), pp. 469-494. | MR | Zbl
- ,[9] Topological properties of nonconvex differential inclusions, Nonl. Anal. T.M.A., 20 (1993), pp. 871-894. | MR | Zbl
- ,[10] Topological properties of nonconvex differential inclusions of evolution type, Nonl. Anal. T.M.A., 23 (1995), pp. 711-720. | MR | Zbl
- - ,[11] Measurable relations, Fundamenta Math., 87 (1975), pp. 53-72. | MR | Zbl
,[12] F. S. VAN VLECK, A note on solution sets of differential inclusions, Rocky Mountain J. Math., 12 (1982), pp. 621-625. | MR | Zbl
-[13] On the properties of the solution set of semilinear evolution inclusions, to appear. | MR | Zbl
- - ,[14] N. S. PAPAGEORGIOU, On the topological regularity of the solution set of differential inclusions with constraints, J. Diff. Equations, 107 (1994), pp. 280-289. | MR | Zbl
-[15] On decreasing sequences of compact absolute retracts, Fundamenta Math., 64 (1969), pp. 91-97. | MR | Zbl
,[16] Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), pp. 305-331. | Zbl
,[17] Kneser's property for du/dt = Δu + √u, Keio Univ. Math. Sem. Rep., 3 (1978), pp. 45-48. | Zbl
,[18] Convergence theorems for Banach space valued integrable multifunctions, Inter. Math. Math. Sci., 10 (1987), pp. 433-442. | MR | Zbl
,[19] On measurable multifunctions with applications to random multivalued equations, Math. Japonica, 32 (1987), pp. 437-464. | MR | Zbl
,[20] On the solution set of evolution inclusions driven by time-dependent subdifferential, Math. Japonica, 37 (1992), pp. 1087-1099. | MR | Zbl
,[21] On the topological property of the solution set of evolution inclusions involving time-dependent subdifferential operators, Boll. Un. Mat. Ital., 8-B (1994). | Zbl
,[22] Discontinuous semilinear differential equations and multiple valued maps, Proc. Amer. Math. Soc., 64 (1977). | MR | Zbl
,[23] Sissa report, 42M (1990).
,[24] Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977), pp. 859-903. | MR | Zbl
,[25] On evolution equations generated by subdifferential operators, J. Fac. Sci. Univ. Tokyo, 23 (1976), pp. 491-515. | MR | Zbl
,[26] Evolution equations associated with subdifferentials, J. Math. Soc. Japan, 31 (1978), pp. 623-646. | MR | Zbl
,