@article{RSMUP_1997__97__17_0, author = {Kalamidas, N.}, title = {A pseudocompact space with {Kelley's} property has a strictly positive measure}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {17--21}, publisher = {Seminario Matematico of the University of Padua}, volume = {97}, year = {1997}, mrnumber = {1476159}, zbl = {0889.54011}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1997__97__17_0/} }
TY - JOUR AU - Kalamidas, N. TI - A pseudocompact space with Kelley's property has a strictly positive measure JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1997 SP - 17 EP - 21 VL - 97 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1997__97__17_0/ LA - en ID - RSMUP_1997__97__17_0 ER -
%0 Journal Article %A Kalamidas, N. %T A pseudocompact space with Kelley's property has a strictly positive measure %J Rendiconti del Seminario Matematico della Università di Padova %D 1997 %P 17-21 %V 97 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1997__97__17_0/ %G en %F RSMUP_1997__97__17_0
Kalamidas, N. A pseudocompact space with Kelley's property has a strictly positive measure. Rendiconti del Seminario Matematico della Università di Padova, Tome 97 (1997), pp. 17-21. http://archive.numdam.org/item/RSMUP_1997__97__17_0/
[1] R. POL, On function spaces of compact subspaces of ∑-products of the real line, Fund. Math., 107 (1980), pp. 135-143. | Zbl
-[2] Function spaces in the topology of pointwise convergence and compact sets, Uspekhi Math. Nauk, 39:5 (1984), pp. 11-50. | MR | Zbl
,[3] Chain Conditions in Topology, Cambridge Tracts in Math., Vol. 79, Cambridge University Press (1982). | MR | Zbl
- ,[4] M. JERISON, Rings of Continuous Functions, Springer-Verlag, New York, Heidelberg, Berlin (1976). | MR | Zbl
-[5] An alternative form of a problem of A. Bellow, Note of October, 10 (1989).
,[6] On injective Banach spaces and the spaces L∞ (μ) for finite measures μ, Acta Math., 124 (1970), pp. 205-248. | Zbl
,[7] A pseudocompact Tychonoff space, all countable subsets of which are closed and C*-embedded, Topology and its Appl., 22 (1986), pp. 139-144. | MR | Zbl
,[8] Calibers of spaces of functions and the metrization problem for compact subsets of Cp(X), Vestnik Univ. Matematika, 43, No. 3 (1988), pp. 21-24. | MR | Zbl
,[9] On pointwise convergence, Compactness and Equicontinuity II, Advances in Math., 12 (1974), pp. 171-177. | MR | Zbl
,