Generating wreath products and their augmentation ideals
Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997), pp. 67-87.
@article{RSMUP_1997__98__67_0,
     author = {Lucchini, Andrea},
     title = {Generating wreath products and their augmentation ideals},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {67--87},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {98},
     year = {1997},
     mrnumber = {1492969},
     zbl = {0898.20018},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1997__98__67_0/}
}
TY  - JOUR
AU  - Lucchini, Andrea
TI  - Generating wreath products and their augmentation ideals
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1997
SP  - 67
EP  - 87
VL  - 98
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1997__98__67_0/
LA  - en
ID  - RSMUP_1997__98__67_0
ER  - 
%0 Journal Article
%A Lucchini, Andrea
%T Generating wreath products and their augmentation ideals
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1997
%P 67-87
%V 98
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1997__98__67_0/
%G en
%F RSMUP_1997__98__67_0
Lucchini, Andrea. Generating wreath products and their augmentation ideals. Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997), pp. 67-87. http://archive.numdam.org/item/RSMUP_1997__98__67_0/

[1] J.H. Conway, - S.P. Norton - R.P. Parker - R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985). | MR | Zbl

[2] M. Aschbacher - R. GURALNICK, Some applications of the first cohomology Group, J. Algebra, 90 (1984), pp. 446-460. | MR | Zbl

[3] K. Buzási - L.G. Kovács, The minimal number of generators of wreath products of nilpotent groups, Contemporary Mathematics, 93 (1989), pp. 115-121. | MR | Zbl

[4] Yeo Kok CHYE, Minimal generating sets for some wreath products of groups, Bull. Austral. Math. Soc., 9 (1973), pp. 127-136. | MR | Zbl

[5] J. Cossey - K. W. GRUENBERG - L. G. KOVÁCS, The presentation rank of a direct product of finite groups, J. Algebra, 28 (1974), pp. 597-603. | MR | Zbl

[6] F. Dalla VOLTA - A. LUCCHINI, Generation of almost simple groups, J. Algebra, 178 (1995), pp. 194-223. | MR | Zbl

[7] K.W. Gruenberg, Cohomological Topics in Group Theory, Lectures Notes Math. no. 143, Springer (1970). | MR | Zbl

[8] K.W. Gruenberg, Über die Relationen moduln einer endlichen Gruppe, Math. Z., 118 (1970). | MR | Zbl

[9] K.W. Gruenberg, Relation modules of finite groups, CBMS Monograph 25, Amer. Math. Soc., Providence (1976), pp. 408-421. | MR | Zbl

[10] K.W. Gruenberg, Groups of non zero presentation rank, Symposia Math., 17 (1976), pp. 215-224. | MR | Zbl

[11] P. Hall, The Eulerian functions of a group, Quart. J. Math., 7 (1936), pp. 134-151. | JFM

[12] A. Lucchini, Some questions on the number of generators of a finite group, Rend. Sem. Mat. Univ. Padova, 83 (1990), pp. 201-222. | Numdam | MR | Zbl

[13] A. Lucchini, Generating wreath products, Arch. Math., 62 (1994), pp. 481-490. | MR | Zbl

[14] A. Lucchini - F. Menegazzo, Generators for finite groups with a unique minimal normal subgroup, Rend. Sem. Mat. Univ. Padova, to appear. | Numdam | MR | Zbl

[15] S. Mac Lane, Homology, Springer (1963). | MR | Zbl

[16] L. Ribes - K. Wong, On the minimal number of generators of certain groups, Groups St Andrews 1989, London Math. Soc. Lecture Note Series, 160, pp. 408-421. | MR | Zbl

[17] K.W. Roggenkamp, Relation modules of finite groups and related topics, Algebra i Logika, 12 (1973), pp. 351-369. | MR | Zbl

[18] K.W. Roggenkamp, Integral representation and presentations of finite groups, Lectures Notes Math. no. 744, Springer (1979). | Zbl

[19] U. Stammbach, Cohomological characterizations of finite solvable and nilpotent groups, J. Pure Appl. Algebra, 11 (1977), pp. 293-301. | MR | Zbl

[20] K.W. Gruenberg - K.W. Roggenkamp, Decomposition of the relation modules of a finite group, J. London Math. Soc., 12 (1976), pp. 262-266. | MR | Zbl