@article{RSMUP_1998__100__123_0, author = {Caterino, Alessandro and Guazzone, Stefano}, title = {Extensions of unbounded topological spaces}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {123--135}, publisher = {Seminario Matematico of the University of Padua}, volume = {100}, year = {1998}, mrnumber = {1675263}, zbl = {0977.54021}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1998__100__123_0/} }
TY - JOUR AU - Caterino, Alessandro AU - Guazzone, Stefano TI - Extensions of unbounded topological spaces JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1998 SP - 123 EP - 135 VL - 100 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1998__100__123_0/ LA - en ID - RSMUP_1998__100__123_0 ER -
%0 Journal Article %A Caterino, Alessandro %A Guazzone, Stefano %T Extensions of unbounded topological spaces %J Rendiconti del Seminario Matematico della Università di Padova %D 1998 %P 123-135 %V 100 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1998__100__123_0/ %G en %F RSMUP_1998__100__123_0
Caterino, Alessandro; Guazzone, Stefano. Extensions of unbounded topological spaces. Rendiconti del Seminario Matematico della Università di Padova, Tome 100 (1998), pp. 123-135. http://archive.numdam.org/item/RSMUP_1998__100__123_0/
[1] G. D. FAULKNER - M. C. VIPERA, Construction of compactifications using essential semilattice homomorphisms, Proc. Amer. Math. Soc., 116 (1992), pp. 851-860. | MR | Zbl
-[2] ESH which induce βN, Rend. Mat. Univ. Trieste, 25 (1993), pp. 57-66. | Zbl
,[3] Hausdorff Compactifications, Marcel Dekker, New York (1976). | MR | Zbl
,[4] Locally Lindelöf spaces, Indian J. Pure Appl. Math., 18 (1987), pp. 876-881. | MR | Zbl
- ,[5] Boundedness in a topological space, J. Math. Pures Appl., 28 (1949), pp. 287-320. | MR | Zbl
,[6] Jr., N-points compactifications, Amer. Math. Monthly, 72 (1965), pp. 1075-1081. | MR | Zbl
[7] Proximity Spaces, Cambridge University Press, Cambridge (1970). | MR | Zbl
- ,[8] Lindelöf spaces, Izvestiya VUZ. Matematika, 32 (1988), pp. 84-88. | MR | Zbl
and