A property equivalent to permutability for groups
Rendiconti del Seminario Matematico della Università di Padova, Tome 100 (1998), pp. 137-142.
@article{RSMUP_1998__100__137_0,
     author = {Mohammadi Hassanabadi, A.},
     title = {A property equivalent to permutability for groups},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {137--142},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {100},
     year = {1998},
     mrnumber = {1675267},
     zbl = {0926.20021},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1998__100__137_0/}
}
TY  - JOUR
AU  - Mohammadi Hassanabadi, A.
TI  - A property equivalent to permutability for groups
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1998
SP  - 137
EP  - 142
VL  - 100
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1998__100__137_0/
LA  - en
ID  - RSMUP_1998__100__137_0
ER  - 
%0 Journal Article
%A Mohammadi Hassanabadi, A.
%T A property equivalent to permutability for groups
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1998
%P 137-142
%V 100
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1998__100__137_0/
%G en
%F RSMUP_1998__100__137_0
Mohammadi Hassanabadi, A. A property equivalent to permutability for groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 100 (1998), pp. 137-142. http://archive.numdam.org/item/RSMUP_1998__100__137_0/

[1] R.D. Blyth, Rewriting products of group elements, I, J. Algebra, 116 (1988), pp. 506-521. | MR | Zbl

[2] R.D. Blyth, Rewriting products of group elements, II, J. Algebra, 119 (1988), pp. 246-259. | MR | Zbl

[3] M. Curzio - P. LONGOBARDI - M. MAJ - D. J. S. ROBINSON, A permutational property of groups, Arch. Math. (Basel), 44 (1985) pp. 385-389. | MR | Zbl

[4] P. Longobardi - M. MAJ - S. E. STONEHEWER, The classification of groups in which every product of four elements can be reordered, Rend. Sem. Mat. Univ. Padova, 93 (1995), pp. 7-26. | Numdam | MR | Zbl

[5] M. Maj - S.E. Stonehewer, Non-nilpotent groups in which every product of four elements can be reordered, Canadian J., 42 (1990), pp. 1053-1066. | MR | Zbl

[6] A. Mohammadi Hassanabadi - Akbar Rhemtulla, Criteria for commutativity in large groups, Canda. Math. Bull., Vol. XX(Y) (1998), pp. 1-6. | MR | Zbl

[7] B.H. Neumann, Groups covered by permutable subsets, J. London Math. Soc., 29 (1954), pp. 236-248. | MR | Zbl