@article{RSMUP_1998__100__231_0, author = {Ambrosetti, A. and Arcoya, D. and G\'amez, J. L.}, title = {Asymmetric bound states of differential equations in nonlinear optics}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {231--247}, publisher = {Seminario Matematico of the University of Padua}, volume = {100}, year = {1998}, mrnumber = {1675283}, zbl = {0922.34020}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1998__100__231_0/} }
TY - JOUR AU - Ambrosetti, A. AU - Arcoya, D. AU - Gámez, J. L. TI - Asymmetric bound states of differential equations in nonlinear optics JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1998 SP - 231 EP - 247 VL - 100 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1998__100__231_0/ LA - en ID - RSMUP_1998__100__231_0 ER -
%0 Journal Article %A Ambrosetti, A. %A Arcoya, D. %A Gámez, J. L. %T Asymmetric bound states of differential equations in nonlinear optics %J Rendiconti del Seminario Matematico della Università di Padova %D 1998 %P 231-247 %V 100 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1998__100__231_0/ %G en %F RSMUP_1998__100__231_0
Ambrosetti, A.; Arcoya, D.; Gámez, J. L. Asymmetric bound states of differential equations in nonlinear optics. Rendiconti del Seminario Matematico della Università di Padova, Volume 100 (1998), pp. 231-247. http://archive.numdam.org/item/RSMUP_1998__100__231_0/
[1] Novel class of nonlinear surface waves: Asymmetric modes in a symmetric layered structure, Sov. Phys. JEPT, 56 (1982), pp. 299-303.
,[2] Homoclinics: Poincaré-Melnikov type results via a variational approach. - Anal. Nonlin., to appear. Preliminary note on C. R. Acad. Sci. Paris, 323, Série I (1996), pp. 753-758. | Numdam | MR | Zbl
- ,[3] Variational perturbative methods and bifurcation of bound states from the essential spectrum, Preprint Scuola Normale Superiore, March 1997, to appear. | MR | Zbl
- ,[4] Stability theory of solitary waves in the presence of symmetry I and II, Jour. Funct. Anal., 74 (1987), pp. 160-197 and 94 (1990), pp. 308-348. | MR | Zbl
- - ,[5] Instability of standing waves in nonlinear optical waveguides, Phys. Lett. A, 117 (1986), pp. 176-184.
- ,[6] On positive muLti-bump states of nonlinear Schrödinger equations under multipte well potentials, Comm. Math. Phys., 131 (1990), pp. 223-253. | MR | Zbl
,[7] Guidance properties of nonlinear planar waveguides, Arch. Rational Mech. Analysis, 125 (1993), pp. 145-200. | MR | Zbl
,