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REND. SEM. MAT. UN1v. PADoVA, Vol. 101 (1999)

PSp,(3) as a Symmetric (36, 15, 6)-Design.

DIETER HELD (*) - JORG HRABE DE ANGELIS (*)(") - MARIO-OSVIN PAVCEVIC (**)

ABSTRACT - In this paper we present a description of the symmetric design with
parameters (36, 15, 6) on which the symplectic group PSp,(3) acts transi-
tively. In particular we give a group theoretical approach to such a
design.

1. Introduction and preliminary results.

Let G be the symplectic group PSp,(3) of order 25,920. It is our ob-
jective to prove that G can be viewed as a symmetric (36, 15, 6)-de-
sign.

We state some facts about G which can be found in [2] and [1]. With
the notation in [2][Lemma 8] we have

LEMMA 1. (i) The group G contains precisely four conjugacy class-
es of elements of order 3 with representatives o, 01, 0 =0,-05 and
o1:05% We have |Cg(o,)|=|Cs(o1")|=81-8 |Cslo)|=27-4, and
|Clo,-0:1) | =27-2. A Sylow 2-subgroup of Cg(o,) is a quaternion
group, and a Sylow 2-subgroup of Cs(@) is a four-group.

(ii) Elements of order 9 in G are roots of 3-central elements of or-
der 3 in G.
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(iii) A Sylow 5-normalizer in G s a Frobenius group of order 20.

(iv) G contains a maximal subgroup S isomorphic to X . The nor-
malizer of S in Aut(G) is isomorphic to g X Z,.

Since we are interested in a transitive action of G on 36 objects we
will have a closer look to subgroups of G which are isomorphic to
2.

LEMMA 2. Let S be a maximal subgroup of G isomorphic to X¢. Let
R =S be a subgroup of G which is conjugate to S in G. Then,

(i) the index of S in G is equal to 36,
(i) R NS 1is isomorphic to either Zy X 24 or 3 x X3,
(iii) S acts on 2 = cclg(S) in orbits of length 1, 15 and 20.

ProoF. Obviously, (i) holds. From |RS|=|S|? |RNS|~'< |G| we
get [RNS| =20.If [RN S| =20, we have [S: RN S| = 36. Thus, S acts
transitively on £ which is a contradiction to the fact that S and R can not
be conjugate under the action of S. Thus, we have |R N S| > 20. We split
the following argument into two cases.

Case 1. Here, 5 divides the order of |[R N S|. Since both R and S con-
tain a Sylow 5-normalizer of G, we get that a Frobenius group of order 20
lies in RN S. Now, |RNS| > 20 yields that R NS is isomorphic to X'5.
Note that the only proper subgroups of S =X which contain a Frobe-
nius group of order 20 as a proper subgroup are isomorphic to 5. We
get [IRNS| =120, i e. [S: RNS| =6 in this case.

Case 2. Here, 5 does not divide the order of R N S. Since |[RN S| >
> 20, and since S = X does not contain a subgroup of index 5, we have
|[RNS|e {28,238, 23-82, 22.8%}, ie. |S: RNS|e{15, 80, 10,20}.
Furthermore, we get that RNS=Z, x>, if |[RNS|=2"8,and RN S
is 8-closed if and only if |[RNS|=2%8% or |[RNS| =232

Case 1 and 2 yield that orbits of S on £ are of length 1, 6, 10, 15, 20, or
30. Since || =36 an easy computation shows that S has precisely one
orbit of length 1, precisely one orbit of length 15 and either 2 orbits of
length 10 or one orbit of length 20. In particular, there are precisely 20
elements in © which intersect S in a 3-closed subgroup.

Let T be a subgroup of G which is conjugate to S in G. Assume that
TNS is 3-closed. Then, S is conjugate to T via the normalizer of



PSp,(3) as a symmetric (36, 15, 6)-design 97

D =05(8NT)in G. Thus, |Ng(D): Ns(D) | is the number of conjugate
subgroups of S in G containing D. Obviously, S contains precisely
10 Sylow 3-subgroups. Hence, D lies in precisely 3 elements of
Q. Thus, |Ng(D)|=3|Ns(D)| =2%.3%, Assume Cgz(D)=D. Then
|Ne(D)/Ce(D) | = 23-3, and by the structure of GL.(3) we have
N¢(D)/Cy(D) = SL,(3). But a Sylow 2-subgroup of SL,(3) is a quater-
nion group and Ng(D) contains a subgroup isomorphic to Dg. Thus, we
have |Cs(D) | = 33, Elements of D* are not 3-central in G, since an invo-
lution of S acts invertingly on D. Since elements of order 9 are roots of 3-
central elements of order 3 in G, we get that the centralizer of D in G is
elementary abelian of order 27. Let P be a Sylow 2-subgroup of Ng(D).
Then, P = Dg. By the lemma of Maschke we have Cg(D) = D X X with
XP=X. By lemma 1 (i) we see that P does not centralize X. Hence, X*
does not contain any 3-central element of G. It follows that |C;(X) | is a
group of order 27-4 which has a four-group as a Sylow 2-subgroup. Obvi-
ously the three conjugates of S, say S, S;, S,, containing D are conjugate
via X. Thus, we have SNS;=SNS;=33x 33 by the structure of
Ng(D). The assertion follows.

2. The design.

Let G, S, 2 be as in section 1, and 2 = {S,, S, ..., S15, Sigy -+, S35}
such that S=S,, S;NS=Z,x%, for 1<i<15 S,;NS=Z3xZ; for
16 < i < 85. Denote by S the set {S,, ..., S;5}, and for S;=8%, ¢,€G,
let S;={Sfi, ..., Sz}, 1 <i<8$5.

Define an incidence structure @ = (&, B, J) by P=Q, B = {TlTe
e}, 3={(R,T|R,TeR,ReT}

THEOREM 1. The incidence structure @ is a symmetric (36, 15, 6)-
design on which Aut(G) acts as an automorphism group.

REMARK. @ is uniquely determined by PSp4(3). It is possible to
show that Aut(®) is isomorphic to Aut(G).

Proor. Since Aut (G) acts on £2 we have that Aut (G) is an automor-
phism group of @. Obviously, |®?| = |$B| =36, and each block, i.e., ele-
ment of B, contains 15 points, i.e., elements of #. Thus, we only have to
show that the intersection of two different blocks contains precisely 6
points.
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Consider S. Since S contains precisely 15 subgroups isomorphic to
Zy x X4, we get that Sy, ..., Si5 are uniquely determined by their inter-
section with S. Consider intersections of conjugate subgroups isomor-
phic to Z, X ¥, in X'¢. Such an intersection is isomorphic to Z, X X5 or Ej.
Since X3 X X3 does not contain an elementary abelian group of order 8,
we get that there are |Z, x X, |/|Eg | = 6 elements of S which intersect
S, in a subgroup isomorphic to Z; x X,. Thus, |SN S, | =6. Note that
SN S, =2Z, x 3, has precisely three orbits on S of length 1, 6, 8, respect-
ively. If |SNS;|>6, then |SNS, | =14. Thus, (S, S;) stabilizes the
set {S} US ={S;} US, which is a contradiction to (S, S;) = G. Thus,
|SNS;| =6 for 1 <is<15.

For 1<i<15 there are precisely 8 elements in {Sy, ..., S35}
which lie in S;. Since S acts transitively on {S, ..., Sg5}, we have that
|S;NS|=|SynS| for any j,ke{16,...,35}. Thus, we have
[{Si65 .-, S35} |-|S;NS|=|S|-8 hence |S;NS|=15-8/20=86, for
J=16. We have shown that |S;N S| =15-8/20 =6, for 1 <;j <35. The
transitivity of G on £ completes the proof.

REFERENCES

[1] J. H. CoNWAY - R. T. CURTIS - S. P. NORTON - R. A. PARKER - R. A. WILSON, At-
las of Finite Groups, Oxford (1985).

[2] Z. JANKO, A Characterization of the finite simple group PSp,(3), Canadian J.
Math., 19 (1967), pp. 872-894.

Manoscritto pervenuto in redazione il 10 maggio 1997.



