Level sets of Gauss curvature in surfaces of constant mean curvature
Rendiconti del Seminario Matematico della Università di Padova, Tome 104 (2000), pp. 1-26.
@article{RSMUP_2000__104__1_0,
     author = {Liang, Fei-Tsen},
     title = {Level sets of {Gauss} curvature in surfaces of constant mean curvature},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {1--26},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {104},
     year = {2000},
     mrnumber = {1809346},
     zbl = {1097.53036},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2000__104__1_0/}
}
TY  - JOUR
AU  - Liang, Fei-Tsen
TI  - Level sets of Gauss curvature in surfaces of constant mean curvature
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2000
SP  - 1
EP  - 26
VL  - 104
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2000__104__1_0/
LA  - en
ID  - RSMUP_2000__104__1_0
ER  - 
%0 Journal Article
%A Liang, Fei-Tsen
%T Level sets of Gauss curvature in surfaces of constant mean curvature
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2000
%P 1-26
%V 104
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2000__104__1_0/
%G en
%F RSMUP_2000__104__1_0
Liang, Fei-Tsen. Level sets of Gauss curvature in surfaces of constant mean curvature. Rendiconti del Seminario Matematico della Università di Padova, Tome 104 (2000), pp. 1-26. http://archive.numdam.org/item/RSMUP_2000__104__1_0/

[1] H.S. Brascamp - E. LIEB, On extention of the Brunn-Minkowski and Prekoja-Leindler theorems, J. Funct. Anal., 11 (1976), pp. 366-389. | Zbl

[2] L.A. Caffarelli - A. FRIEDMAN, Convexity of solutions of semilinear elliptic equations, Duke. Math. J., 52 (1985), pp. 31-456. | MR | Zbl

[3] J.T. Chen - W.H. Huang, Convexity of capillary surfaces in outer space, Invent. Math., 67 (1982), pp. 253-259. | MR | Zbl

[4] R. Finn, Existence criteria for capillary free surfaces without gravity, Indiana Univ. Math. J., 32 (1982), pp. 439-460. | MR | Zbl

[5] R. Finn, Comparison Principles in Capillarity, Calculus of Variations, Lecture Notes in Mathematics, vol. 1357, Springer-Verlag, 1988. | MR | Zbl

[6] H. Hopf, Lectures on Differential Geometry in the Large, Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, 1983. | MR | Zbl

[7] W.H. Huang, Superhamonicity of curvatures for surfaces of constant mean curvature, Pacific J. of Math., 152, no. 2 (1992), pp. 291-318. | MR | Zbl

[8] W.H. Huang - CHUN-CHI LIN, Negatively Curved Sets in Surfaces of Constant Mean Curvature in R3, Arch. Rat. Mech. Anal., 141, no. 2 (1998), pp. 105-116. | MR | Zbl

[9] N.J. Korevarr, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 32 (1983), pp. 603-614. | MR | Zbl

[10] N.J. Korevarr - J.L. Lewis, Convex solutions to nonlinear elliptic equations having constant rank Hessians, Arch. Rat. Mech. Anal., 32 (1987), pp. 19-32. | Zbl

[11] H. Wente, Counterexample to a conjecture of H. Hopf, Pacific J. Math., 121 (1986), pp. 193-243. | MR | Zbl