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A Third Look at Weight Diagrams.

NIKOLAI VAVILOV(*)

ABSTRACT - In this paper, which is a sequel of [PSV], we develop a completely ele-
mentary approach to calculations in Chevalley groups G = G(O, R) of types
0 = E6 and E7 over a commutative ring using only the weight diagrams
(alias, crystal graphs) of their minimal modules. After an elementary con-
struction of a crystal base we explicitly describe action of root subgroups and
of the extended Weyl group, multilinear invariants, equations defining the or-
bit of the highest weight vector and Freudenthal tranvections. As an illustra-
tion of our methods we give the first complete a priori proof of the central step
in the method of decomposition of unipotents (see [VPS], [V2], [VP], [SV]
[VPe]) for these cases. Namely we prove that any singular column v is sta-
bilised by a non-trivial Freudenthal transvection of a certain type («fake root
unipotent») and that there are in fact enough of those to generate the whole
elementary group of type 0 over R as the v ranges over the columns of a ma-
trix g e G . It is known that this result immediately implies the main structure
theorems for G (description of normal subgroups, standard commutator for-
mulae and the like). The results of the present paper provide complete proofs
for the algebraic part of [V2] in the cases of E6 and E7, complete proofs for the
geometric part of the above paper are given in [V7].

Introduction.

Let 0 be a reduced irreducible root system, W = W( ~ ) be the corre-
sponding Weyl group. We fix an order on (P and denote by 11=
- ~ a 1, ... , a L ~, ø + and 0 - the corresponding sets of fundamental, positive
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and negative roots respectively. Then the Weyl group is generated by the
set S of fundamental reflections s, = wa 1, ... , sl = Wa z. As usual P( ~ ) de-
notes the lattice of integral weights of 0 and P( ~ ) + + is the cone of domi-
nant integral weights. Recall that any weight cv E P( ~ ) + + is a non-nega-
tive integral linear combination of the fundamental weights w 1... , ~ L .

Further, let G = G(O, R) be the simply connected Chevalley group
of type (P over a commutative ring R with 1. One can find all the relevant
notions in [A], [B], [C], [H6], [H], [M], [Stl], [S] (see [V2], [V4], [VP] for
many additional references). Fix a dominant weight cv E P( ~ ) + + and let
V = V( cv ) be the Weyl module of G with the highest weight cv . The corre-
sponding representation G ~ GL(V) will be denoted by yr. By A(n) we
denote the set of weights of the representation 7r with multiplicities. An
admissible base v’, A E A(z), of V consits of weight vectors and has the
property that the action of the root unipotents xa ( ~), a is de-
scribed by matrices whose entries are polynomials in ~ with integral
coefficients.

The weight diagram of .7r is a marked graph, whose nodes correspond
to the weights of yr (usually with multiplicites) and two nodes A andu are
joined by a bond marked i if their difference A - 03BC = a i is the i-th funda-
mental root. Eventually, one should indicate the positive direction as
well. Sometimes this is done by drawing arrows instead of lines. We
draw the diagrams in such a way that a larger weight stands to the left of
and/or higher than a smaller one, with the landscape orientation usually
being primary. Another convention is that we omit at least one of the two
equal labels at the opposite sides of a parallelogramm.

Below we reproduce two typical weight diagrams, the one of the repre-
sentation of the Chevalley group G( E 6 , R) with the highest weight (ij 1 ,

Fig. 1. - (E6, w1).
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and the one of the representation of the Chevalley group G(E7, R) with
the highest weight 

Fig. 2. - (E7, w7). 

Here, as always, the numbering of the fundamental roots follows that
of [Bl]. The weight diagrams are especially useful when - as in the
above cases - all weights (apart, probably, from the zero weight) have
multiplicity one, in particular, for basic representations [M]. Recall, that
a representation is called basic, if its nonzero weights form one orbit
with respect to the action of the Weyl group. All basic representations,
apart from a unique representation for each type, are microweight [B2],
i.e. they do not have zero weight, so that the weights in fact form a single
Weyl orbit, as in the above cases (E s , WI) and ( E 7 , w 7 ). Diagrams of all
basic and adjoint representations are collected in [PSV].

These diagrams arise in a number of contexts, ranging from repre-
sentation theory of semisimple Lie algebras and algebraic groups to in-
variant theory, algebraic geometry, algebraic K-theory, differential ge-
ometry and combinatorics. One can find detailed discussion of the dia-
grams and some of their uses, as well as many additional references, in
[Ho], [PR], [PSV], [Sch], [V2], [V5], [VP]. Now, a posteriori, weight dia-
grams are a special case of crystal graphs of M. Kashiwara (1) [Kl]-[K3].

(1) Which are intimately related to the canonical bases of Lusztig [L1]-[L3].
An explicit description of crystal bases is ultimately provided by Littelmann’s
path theory [Lil], [Li3]. One can find a very accessible introduction to this circle
of ideas in [J].
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That the weight diagrams as described here and depicted in [PSV] do in-
deed coincide with the crystal graphs is obvious for microweights (the
microweight representations do not melt - any temperature is like tem-
perature zero; see also [Li2] for a more general result describing crystal
graphs for almost all fundamental weights). For the adjoint representa-
tions it is checked in [Ma]. For the classical cases it follows also from the
explicit construction of crystal graphs in [KN].

The first appearance of the weight diagrams in print, which we could
trace (2), is [CIK]. There the weight diagrams were considered purely
combinatorially, as the adjacency diagrams for the cosets of the Weyl
group W = W( ~ ) modulo a parabolic subgroup Wj, J c II. For example
the nodes of the above diagram may be interpreted as the cosets W/WJ =
= W( E 6 (/W( D5 ). two cosets w, Wj and w2 Wj are joined by a bond marked i
if = si wl WJ for the i-th fundamental reflection si . In the case of

microweight representations these diagrams are - up to labels - the
Hasse diagrams of the (reversed) induced Bruhat order. This is the most
common interpretation of the diagrams, see, for example, [BE], [CC2],
[Hil], [Hi2], [PR], [PI], [P2], [Sch], [St], [V2], [V5] and references
there.

Weight diagrams are also sometimes used as a shorthand form of the
weight graphs. This graph has the same nodes as the corresponding
weight diagram, shereas its bonds correspond to all positive roots,
rather than just the fundamental ones. In other words, two weights A, p
are joined by a bond marked a E ø + The weight graphs of
types and (E7, have special names, they are called the
Schldfli graph and the Gosset graph respectively, see [BCN] and refer-
ences there. Weight graphs have very strong regularity properties and
have been extensively studied in combinatorics, expecially in the context
of finite geometries and sphere packings. Historically the graphs of

types (E6, and (E7, first appeared in the theory of algebraic
surfaces. The Schlafli graph describes the configuration of the 27 lines
on the surface obtained from the projective plane p2 by blowing up 6
points, whereas the Gosset graph describes the configuration of the 56

(2) E. B. Vinberg told us that weight diagrams were used by E. B. Dynkin and
his students in Moscow in mid-fifties. To describe their shape Dynkin even coined
a special word Veretenoobraznost’, meaning approximatively «the property of ha-
ving form similar to that of a spindle» - what would nowadays be called «rank
symmetry» and «rank unimodality». But they never made their way to the publi-
shed works of Dynkin’s school, as far as I can see.
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nonsingular rational curves with negative self-intersection on the sur-
face obtained from P~ by blowing up 7 points, see [Hr], [Mn] for details
and [v5] for further references and an explicit identification of the
curves with the nodes of Figures 1 and 2.

The second look at the weight diagrams was started by the paper of
M. R. Stein [St2]. The usual techniques based on the calculations with
canonical forms (Bruhat decomposition, etc.) does not work for groups
over rings. This is why one has to find a substitute for matrix calculations
which works also for exceptional groups. H. Matsumoto [M] developed
techniques which allow to calculate with one column or one row of a ma-
trix representing an element of a Chevalley group G in a basic represen-
tation (V, In particular, he has shown that one may normalize an ad-
missible base v ~ of V in such a way that the action of xa ( ~) is described by
very nice formulae. In the case of a microweight representation all

unipotents are quadratic and the formulae become especially simple:

otherwise

(which is a special case of the formulae, expressing the action in a canoni-
cal base, see the footnote in § 2). In the presence of zero weight the for-
mulae are slightly more complicated.

In [St2] the weight diagrams were used to visualize these calcula-
tions. Namely, we may conceive a vector a = (a,~) E V as a marked graph
as follows: put aA to the node of the diagram corresponding to A. Then
the diagram shows how xa (~) acts on the components of a. A positi-
ve/negative fundamental root unipotent x + a 2 ( ~) acts along the bonds
marked i in the positive/negative direction. For an arbitrary root a the
action of xa (~) is described by directed paths with the labels, corre-
sponding to the expansion of a into a linear combination of the funda-
mental roots, see [St2], [V2], [PSV], [VP].

Now the matrix of an element n( g), g E G , with respect to the
base v ~, is defined in the usual way. Its columns and rows
are indexed by the weights and the p-th column consists
of the coefficients in the expansion of with respect to v ~.
thus the columns of the matrix may be interpreted as vectors from
V. By the same token, the rows of the matrix are vectors from
the dual module V*. It is essential that the columns and the rows
of this matrix are not linearly ordered, but partially ordered by
the corresponding weight diagram or its dual, respectively. Using



206

the weight diagrams one can fairly efficiently calculate with such

matrices.

However in [M], [St2] and subsequent publication almost all calcula-
tions were performed up to signs. As M. R. Stein himself puts it: «It

should be noted that in describing the elementary transformations no at-
tempt to fix signs has been made» [St2]. In the present paper we make
yet another step. Namely, we show that in fact a weight diagram encodes
also the information about the signs. Consider the action constants cA,
defined by = vÀ + cÀavÀ+a. We show that the signs of cA,’s are
easily determined by looking at the weight diagram.

Let us illustrate this in the above example of (Es, see § 2 for the

precise statements. It turns out, that one can normalize an admissible
base in such a way that for a fundamental or a negative fundamental root
a all cA, are + 1 (Theorem 1). Now contemplating Figure 1 one notices
that, for instance, the six paths with labels {1, 3}, corresponding to the
root a 1 + a 3 are of two different kinds: when read in the positive direc-
tion three of them have labels (3, 1), whereas three others have labels
( 1, 3 ). This means precisely that (for the standard choice of structure
constants for E6, see [C], [GS], [V3] and references there) three of the
action constants are + 1, whereas the other three are -1. The
same applies to all roots: one may compute the sign of the action con-
stants from the order of labels in the paths corresponding to a given root
(Theorem 2).

In other words, a weight diagram ( ~ , to) (together with the struc-
ture constants of the corresponding Lie algebra, or, what is the same, to-
gether with the weight diagram ( ~ , ad) of the adjoint representation of
the corresponding type) contains all information necessary to completely
describe the action of G on the module with the highest weight cv . Of

course, a weight diagram is much easier to memorize and to use, than a
table of the action constants. With the help of the weight diagrams one
gets an explicit control over the action of the root unipotents xa (~) in the
minimal representation of the exceptional groups. In fact, one can think
of the above diagrams as a mnemotechnical device, which encodes in a
compact form most of the information you might be willing to recover
about the groups of type E6 or E7 if you pretend to calculate in them on a
beach and have forgotten your Bourbaki at home.

In this paper we illustrate some of the possible applications of this
idea. First of all, what we said above means that in fact a weight diagram
describes the action of the extended Weyl group W = W(Ø) (also called
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the Tits-Demazure group [MPS]), not just of the Weyl group itself. This
is extremely important, since the extended Weyl group controls signs in
most of the calculations related to G . In all usual cases G has multilinear

invariants on V which have very few W-orbits of monomials (say, just
one, two or three). This means that the weight diagrams allow to explic-
itly control the equations on the entries of matrices representing ele-
ments of G . After an explicit construction of the cubic form for E6 and
some remarks concerning E7 we take a special case of this problem and
explicitly determine the equations defining the orbit of the highest
weight vector (Theorem 3).

In [V2, §§ 10-14] we had to find a non-trivial element of root type sta-
bilizing a given vector v E V. In the calculation reproduced there we had
to quote explicit knowledge of the action constants as well as of the equa-
tions defining the orbit of the highest weight vector. Here we show that
in fact this is not necessary, one can check that the unipotent elements
constructed there stabilize a given (singular) vector simply by looking at
the order of labels in certain paths and that these unipotents actually
generate the whole elementary group as the vector ranges over the
columns of a matrix g E G (Theorems 4 and 5). Thus the present paper
may be regarded as an updated version of the algebraic half of [V2]. We
do not try to include here complete proofs for the geometric part, since
this would more than double the length of the paper.

To avoid some further technical complications related to the presence
of zero weight and to present the ideas in their simplest form, in this pa-
per we focus on the microweight representations, especially on those of
types (E6, w 1 ) and (E7, (jj 7). In particular for types E6 and E7 the con-
tents of the present paper suffices to supply complete proofs for what
was left open in [VPS], [V2]. In [V7] I revise also the geometric part of
[V2] giving a complete proof of Theorem 1 of [V2] for these cases. On the
other hand, to analyse the case of E8 one is compelled to work in the ad-
joint module and this is, probably, the correct approach for all types.
Classical cases are described in detail in [V2] and especially in my joint
works with A. V. Stepanov [SV] and E. Ya. Perelman [VPe], whereas
[V6] treats the adjoint case for simply-laces systems. A systematic treat-
ment with the emphasis on the adjoint and the short-root modules will
appear in my forthcoming joint papers with E. B. Plotkin, «Structure of
Chevalley groups over commutative rings », see [V2], [VP] for a descrip-
tion of the whole project (in fact the five sections of the present paper
are toy versions of [VP] and subsequent papers).
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It is assumed that the reader actually looks at Figures 1 and 2 - and,
possibly, at other figures from [V2], [PSV] - while going through §§ 2, 3
and 5. But there is much more hidden in them, than what we could possi-
bly mention here. For example, the number of all paths from the left end
to the right end is exactly the multiplicity of the highest self-intersection
of the cycle of codimension 1 in the Chow ring A * ( G/Pi ), where i = 1 or 6
for E6 and 7 for E7, see [Hil], [PI]. Many other similar observations from
various sources are collected in [PSV], [V5]. The pictures certainly de-
serve a further look («... und weise die Gedanken oder Traume nicht ab,
die dir dabei etwa kommen»).

1. Preliminaries.

This section contains some background material, related to basic rep-
resentations, structure constants of Lie algebras and realization of mi-
croweight representations in the unipotent radicals of parabolic sub-
groups.

1 °. Basic representations.

We keep notation from the introduction. In particular, yr is a basic

representation of a Chevalley group G on a Weyl module V, (o is the

highest weight of this representation. Recall that by we denote the
set of weights of .7r with multiplicities. All non-zero weights have multi-
plicity one, and we denote the set of non-zero weights of yr by ~l * (n). In
turn, the multiplicity of the zero weight equals the number of the funda-
mental roots which are weights of this representation. In other words,
ne = mult ( 0 ) = ] 4 (Jt) ] , where L1(n)=A*(n)nII. Then A(Jt) has m
«distinct» zero weights 5, one for each a E L1(n).

The above definition of a basic representation is equivalent to the fol-
lowing one: if the difference a = À - Il of two weights À, Il * (.7r) is a
(fundamental) root, then ,u = wa (~, ), see [M]. This means that for any
non-zero weight A of a basic representation takes one of the follow-

ing three values 

Then
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PROOF. By definition of a basic representation wa(À) = ~, + a. It re-
mains to compare this with the definition of a reflection with respect to a
root.

LEMMA 2. Let a , a + {3 E ~ be such that À, À + a, À + À + a +

+ {3 E A(n). Then at least one of the following two assertion holds:

PROOF. Suppose that the weights ~, , ~. + a , ~, + ~3 , ~, + a + ~3 are all

non-zero. Then by the preceding lemma

which means exactly that ( a , = 0 .

In particular, if the weights ~, , ~, + a , ~, + ~3 , ~, + a + ~3 are all non-

zero, then a and f3 must be orthogonal short roots, whose sum is a long
root. For simply-laced root systems this is impossible. This does not oc-
cur for the fundamental. roots either: indeed, two orthogonal fundamen-
tal roots generate a subsystem, isomorphic to A1 + Ai and not to B2.

LEMMA 3. Assume that W is simply laced -r is a microweight rep-
resentation and a, + f3 E 0. If for a given weight A E one has

A + a + ~3 E A(z), then A + a E A(;r) or A + ~3 E but not both.

PROOF. Since (P is simply laced and a + ~3 E=- 0, the roots a and f3 can-
not be orthogonal. Thus, by the preceding lemma, A + a and A + f3 cannot
be both weights of .7r. On the other hand, if neither of them is a weight,
then Wa (/I) = h - a, A and = h - A. However by assumption
wa+/3(À)=À+a+f3 and now the equality wa+ø=wawøwa leads to a
contradiction.

In the sequel we use two notions of distance between two weights
~,, p EA(n). As usual we define the distance as the length of a shortest
path between A and p . The distance between A andu in the weight graph
is denoted by d(A, p ). In other words, d(A, root, in this
case the weights A and p are called adjacent. Similarly, d(A, Jl) = 2 if A -

is not a root, but there exists a weight v such that both h - v and v - p
are roots. For reasons which become apparent in 3° two weights at dis-
tance 2 are called orthogonal.. In the case of ( E6 , one has d(A, ,u ) ~ 2
so that any two distinct weights are either adjacent, or orthogonal. But
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in the case of ( E 7 , ~ 7 ) for any A there exists exactly one p such that
p) = 3. This p will be denoted by Z * and called the opposite of A.
We will use also the distance between two weights in the weight dia-

gram itself, which will be denoted by h(A, ,u ). First, let A and u be two
comparable is a linear combination of the fun-

damental roots with nonnegative coefficients and h(~, , p) = ht(~ 2013~). In
general h(A, p) = h(v, À) + h( v , ,u ), where v is the least upper bound of ~,
and ,u . For a microweight representation can be described also as
the length of the shortest element w E W such that w(A) = 03BC (that such a
w exists is exactly what it means for a representation to be microweight).
The maximal values of h(II, p) for ( E 6 , and ( E 7 , (7) are 16 and 27
respectively.

2’. Structure constants.

Let L be the complex semisimple Lie algebra of type (P with the Lie
bracket [ , ], H be a Cartan subalgebra of L . Consider the root space de-
composition a (=- 0, of L with respect to H. Choose a
Chevalley system ea E La Bf 0 1, a E=- 0, see [B2], [H6]. Recall that togeth-
er with the fundamental coroots hf3, the elements ea form a
Chevalley base. In particular, for all roots such that a + ~3 ~ 0
the structure constants N af3, where [ ea , e~ ] are integers.

The constants arise also as structure constants in the Chevalley
commutator formula. For two elements x, y E G we denote by [x, y]
their commutator xyx -1 y -1. Let now o:, /3 + ~3 ~ 0, ~, t7 Then
the Chevalley commutator formula asserts, that

where the product on the right hand side is taken over all roots of the
form ia + jfl E ~ , i , j E N, in any given order. One has = 0 , ± 1, ±
± 2, ± 3 and the primes p = 2, 3 which actually appear in the formula are
called very bad for G (or for 0). The constants are called the struc-
ture constants of the Chevalley group, and Naf3ll = For a simply
laced root system the product on the right hand side has at most one fac-
tor, so that Naf3 are the only structure constants.

For the simply laced case one has N af3 = 0, ± 1 and the only problem
is to determine the signs of the structure constants. Below we describe
the choice of signs which will be used throughout the paper. Let a Ei 0 +
be a positive root. Then a = ~ mi a ü a i E lI , where ~i are non-negative
integers. Their sum E mi is called the height of the root a and is denoted




