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Regularity of the Free Boundary for non Degenerate
Phase Transition Problems of Parabolic Type.

L. FORNARI (*)

ABSTRACT - In this work we give results on the regularity of viscosity solutions
and of their free boundaries for a class of parabolic phase transition in which
the dependence on the point ( x , t ) of free boundary is introduced in the phase
transition relation.

1. Introduction.

Recently, some geometrical ideas of the minimal surface theory (see
[3], [4]) and general results on the positive solutions of the heat equation
by Harnack inequality (see [7], [8]) made a satisfactory improvement in
the understanding of evolution free boundary problem with two phases.
In the papers [3] and [4] Caffarelli considers elliptic free boundary prob-
lems, but the main strategy used is adaptable to the parabolic case even
if the duality between the parabolicity of heat equation and the hyper-
bolicity of the free boundary condition produces some difficulties in

studying this kind of problems. Therefore, in general, the regularity re-
sults in the parabolic case are weaker than the corresponding elliptic
ones. In the paper [2] the authors consider viscosity solutions of a class
of evolutionary free boundary problems (including the classical Stefan
problem). One of the main results is that under suitable non-degeneracy
conditions, Lipschitz free boundary regularize instantaneously and that
viscosity solutions are indeed classical ones.

The condition on the free boundary expresses the fact that its speed

(*) Indirizzo dell’A.: Corso E. Filiberto 89/A, 23900 Lecco (LC).
E-mail: lorenzo.fornari@polimi.it



28

depends on the heat fluxes and on the normal unit vector on the free
boundary itself. We consider the situation in which the speed depends
also on the point (x, t) of the free boundary.

In this case extracare in the scaling properties of the problem is re-
quired. The notion of viscosity solution, considered in this paper, have
been used also in other important situations. In particular, in the works
[9], [11], where free boundary problems arising in combustion theory are
treated, and in [6], in which the regularity for the free boundary in the
porus media equation is dealt with. The existence of viscosity solutions
for these free boundary problems is an interesting open problem since
the presence of free boundaries makes it impossible to use the standard
approach with respect to the usual viscosity theory for second-order el-
liptic and parabolic equations.

2. Definitions, preliminary results.

Let us now introduce the class of free boundary problems with which
we are going to deal with and the concept of viscosity solution. Let Q, =

= B1 ( o ) x ( -1, 1 ), where B1 ( o ) is the unit ball in centered at 0 .

First of all we give the definition of classical solution.

DEFINITION 1. Let u be a continuous function in Ql. Then u is
called a classical subsolution (supersolution) to a free boundary problem

where Vv is the speed of the surface Ft : = 3Q I n (t) in the direction
v : _ . Moreover, there exist two real constants a e c * with 0 

I
 a ~ 1 and c * &#x3E; 0 such that:

1) a function H61-
der continuous of esponent a, with Holder constant H &#x3E; 0 respect to
(x, t ) and L &#x3E; 0 respect to the other three arguments;
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If u is both classical subsolution and classical supersolution, then u is
called a classical solution to a free boundary problem. The set F =
= 8Q + n Q1 is called the free boundary.

DEFINITION 2. A function u continuous in Ql is called a viscosity
subsolution (supersolution) to a free boundary problem if, for any sub-
cylinder Q of Q1 and for every classical supersolution (subsolution) v in
Q , u , v ( u ~ v ) on ap Q implies that u S v ( u , v ) in Q.

We say that u is a viscosity solution if it is both a viscosity subsolution
and a viscosity supersolution.

It is easy to show that classical solutions are viscosity solutions.
A famous example of evolution free boundary problem with two phas-

es is the Stefan problem which is a simplified model of phase transition
in solid-liquid systems (see [14], [15], [16]). In this case we have that the
general interface condition (2.1 ) is of the kind: G( ( x , t), v , uv , uv ) _

u++ __

= = uv - uv , and so the hypotheses 1), 2) and 3) are satisfied with
uv 

v v

a=1.

In [12], it is proved existence of the classical solutions in a small time
intervall. The global-in-time existence of the classical solution may fail.
This leads us to construct for all times weak solutions [10] which are con-
tinuos [5]. Last result allow to show that weak solutions of the two-phase
Stefan problem are viscosity solutions, according to the above defini-
tion.

We recall that a point (xo, to ) E F is regular from the right (or from
the left) if there exists a ( u + 1 )-dimensional ball B ~n + 1 ~ c S~ + ( S~ - ) such

that B(n + 1) n F = {(x0, t0)}.
In this paper we consider viscosity solutions u of a free boundary

problem in a cylinder Q2 = B2 ( 0 ) X ( - 2 , 2 ), whose free boundary F is
given by the graph of a Lipschitz function.

Without essential changes in the proofs, most results proven in [1]
may be extended to our case where G depends on the point (x, t) E F.
Now, we list in the Theorem below such regularity results. The symbol
~ ~ , ~ ) will denote the inner product in Rn or Rn + 1 .

THEOREM A ([1], Theorems 2, 3, 4 and Corollaries 4, 5). Suppose u
is a viscosity solution to a free boundary problem in Q2, whose free
boundary F , contains the origin and is given by the graph Xn = f ( x ’ , t),
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(x’ , t) E X of the Lipschitz function f, with Lipschitz constant
L. Moreover M = sup u and u en , - 3 - 1, where en is the unit vectorQ2 2

in the xn direction. Then, in Q1

i) there exists a (n + 1 )-dimensional cone T( en , 8 ), with axis en
and opening 0 = 0(n, L , 9 M, aI, a2 ), such that, along every direction v E
E T( en , 8 ), u is monotone increasing;

ii) there exists c = c(n , L , M, aI, a2 ) such that:

where dx, t denotes the distance between (x, t) and F, while V =
Dt);

iii) u is Lipschitz continuous.

iv) (Asymptotic development near regular points from the right
or the 

Let (xo, to) E F be a regular point from the right, v the inward spa-
tial normal at (xo, to) of B ~n +1) n f t = to ~ and d(x, t) be the distance be-
tween (x, t) and (xo, to). Then there exist numbers a + , a - , B + , B _
such that near ( xo , to ),

with a + &#x3E; 0 , a _ ; 0 and equality holding on the hyperplane t = to ;

If ((Xo, to ) is a regular point from the left) the inequalities
in (a) and (b) are reversed, a + ; 0 , a - &#x3E; 0 and v is the outward spatial
normal.

v) (Asymptotic development at «good points,»).
Near almost all points ( xo , to) of differentiability of F (with respect

to surface or caloric measures) u has the asymptotic behavior in (a)
with equality sign in both ( a) and (b). In this case a + ~ 0 , a - a 0 and
v is the normal to the tangent plane to Fto at (xo, to).

We note that in general the free boundary may not regularize instan-
taneously as the counterexample in the two-phase Stefan problem shows
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(see section 10 of [2]). Therefore we assume the following non-degenera-
cy condition which prevents simultaneous vanishing of the two fluxes
from both sides of the free boundary: there exists m &#x3E; 0 such that, if

(xo, to ) E F is a regular point from the right or from the left, then, for any
small r,

From global considerations (see [4]) it follows, in some cases, this
non-degeneracy condition, which allows us to conclude that Lipschitz
free boundary are actually e1 graphs and therefore viscosity solutions
are indeed classical.

For the reader’s convenience, we state:

THEOREM B ([2], Main Theorem). Let u be a viscosity solution of a
free boundary problems in Q2 , whose free boundary, F, is given by the
graph Xn = f ( x ’ , t), ( x ’ , t ) X IE~. , of the Lipschitz function f, with

Lipschitz constant L . Assume that

E F, the non-degeneracy condition holds and that ‘G = G( v , d , e): 3B, x
x R2 ~ IE~ is a Lipschitz function in all its arguments, with Lipschitz con-
stant LG and, for some c * &#x3E; 0: Dd G ; c * , De G ~ - c * . Then, the follow-
ing conclusions hold:

i) in Q1 the free boundary is a e1 graph in space and time.
Moreover, for any ?7 &#x3E; 0 , there exists a positive constant C1=
= C1 ( n , LG , M , L , c * , aI, ~, 1]) such that, for every ( x ’ , xn , t),

with C2 = C2 (u , LG , M, L , c * , m , a2 , 7y). Therefore u is a classical
solution.

The purpose of this article is to prove a generalization of the Theorem
B in the case in which the function G depends on the point (x, t), and can
be stated in the following way:
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THEOREM 1. Let u be a viscosity solution of a free boundary prob-
lem in ~2 , whose free boundary, F, is given by the graph Xn = f ( x ’ , t),
(x’ , t) x IE~., of the Lipschitz function (in space and time) f, with

Lipschitz constant L . Assume that

E F and that the hypotheses 1), 2), 3) of pages 2 and 3 are satisfied by the
function G . Moreover we suppose that non-degeneracy condition holds.
Then:

a) in Q, the free boundary is a e1 1 graph in space and time.
Moreover, Vi7 &#x3E; 0, there exists a positive constant C1=
= C1 ( n , L , M, H, L, c * , m , aI, a2 , q, a) such that, for every ( x ’ , xn , t),
( y ’ , yn , s) E F we have:

with C2 = C2(n, L, M, H, L, c *, m, a1, a2, 77, a). Therefore u is a clas-
sical solution.

To prove the Theorem 1 we adopt the strategy of the Theorem B. We
recall that u is monotone increasing along any direction v in a cone
T( e , B ) : := {~ : 1 v I = 1, e ~ v ~ with e ~ I =1, is equivalent to saying
that for any small E &#x3E; 0

it u(x) &#x3E; sup u( y), then the level surfaces of u are hyper-
planes. 

Ee)

Furthermore, v(x) = sup u( y) for any E, 6 small enough, is a
y E b8(x - Ee)

subsolution of the same free boundary problem as u . Using such re-
marks, the regularity results will be achieved by improving the opening
8 of the cone of monotonicity, that is by showing that e converges to Jt/2
on a sequence of dyadically contracting cylinders around a free bound-
ary point. The starting point is the existence of a monotonicity cone
T( e , 8 ) in space and time, such that in a neighborhood for
each íEr(e, 8) (Theorem A i)). The next step consists in increasing the
opening of cone of monotonicity in space and in time away from the free
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boundary. Then we carry such interior gain to the free boundary in a
small cylinder. Finally, an appropriate rescaling and iteration of the
above steps gives the results. In this final iteration the opening in space
and time behave differently so that it is convenient to introduce the fol-
lowing angles: 6 = Jt/2 - e (defect angle in space) and p = n/2 - 8 (de-
fect angle in time), where 0 is the opening of the spatial section of the
monotonicity cone 8 ), while 01 is the opening of the section of the
cone of monotonicity in the ( en , et )-plane. To get an enlargement of the
cone in space away from the free boundary, we may use the techniques
contained in the sections 2 and 4 of [2] that exploit Harnack’s inequality.
In fact some of the Lemmas in that paper hold also in our situation, in
particular all the results obtained away from free boundary in which the
free boundary condition does not enter. Therefore to prove the Theorem
1, we must show that, in this new situation, it is again possible to have an
interior gain process in time (section 3), the propagation to the free
boundary by Propagation Lemma (section 4), the regularization in space
and in space-time (section 5).

The various constant c’s, which will appear in the sequel, may vary
from formula to formula and, unless explicitly stated, will depend on
some or all of the relevant constants n , L , M , H , L, c * , m , a2 , ~ , a .

3. Interior gain process in time.

We suppose that en was the projection in space of the axis of the
monotonicity cone, whose defect angle in time is u = z/2 - Ot. This

means that, there exist 7 A ~ B with B - A =!l and A -

for (x , t ) everywhere not on the free

boundary F and almost everywhere on h’. The enlargement of the mono-
tonicity cone in time away from and in both sides the free boundary, that
is equivalent to increase A or lower B , requires the following re-

sult :

LEMMA 2. Let u be a viscosity solution to a free boundary problem
in
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Then there exists c1, C &#x3E; 0 and C2 E (0, 1 ) such that if 3 is snzall, 3 S
3

 C211 -; , we have

PROOF. For almost every (xo, to) E F with respect to surface mea-
sure, we have

By Lemma 7 in [2], with and

+ t , t ), it follows that for every

then

Now, for each

where
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we obtain

Since the rest of the proof is the same as that of Lemma 8 in [2], the
Lemma is proved.

4. Propagation to the free boundary.

In this section we use the Lemmas 9, 10, 11 in [2], that hold in our
situation, to obtain the Propagation Lemma. These Lemmas exploit a
powerful topological method introduced by Caffarelli in [3]. In the next
Lemma we carry to the free boundary the interior gain in the aperture of
the monotonicity cone using a family of subsolutions able to «measure »
this opening. This is one of the most delicate points where we use hy-
potheses 2) and 3) satisfied by G . We observe that first, we must prove
regularity in space and then in time because in Lemma 2 we require that
defect angle was much smaller in space than in time.

LEMMA 3. (Propagation Lemma). Let U2 be two viscosity sol-
utions of the free boundary problems in Q2 = B2 X ( - 2 , 2), with F(U2)
Lipschitz continuous and (0, 0) E F. Assume that:

and, for some h small,:

V(v, d, 
are small enough, there exists c E ( 0 , 1 ) such that in Bl/2 x ( - T/2 , T/2 )
it results
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PROOF. We construct a continuous family of function 7D 77 = 77 + PUEW
such U2 E [ 0, 1 ], with v~ + cha)E in x ( - T/2 , T/2),
where ul and w is a continuous function non negative
in

such that

Now, we show that S = [0, 1]: v~(x, t) ; u2(x, t), t!(x, t) X

x ( - T/2, 772)} is both open and closed in [ 0, 1 ]. Exploiting hypotheses,
maximum principle and the continuity of the functions considered, we
deduce that 0 E ,S , and is closed.

We show that S is open. We assume that v~ o ~ U2 for some E [ 0 , 1 ].
Supposing that there exists (xo, to) such that to ) = to) = 0
(ul ( yo, so ) = 0), by Lemma 10 in [2] we get that

where
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Now, by Theorem A, we deduce:

By Corollary 1 in [1], since F = F(u2 ) is Lipschitz, we obtain

in ~ u2 ~ 0 ~ strictly away from the parabolic boundary of D.
Near xo, for t = to, we have:

where a + = a * + (1- = a *_ - and C = PN is the con-
stant that appears in the hypothesis (iv).

Again by Theorem A we obtain:

Since consid-

ering the initial hypotheses satisfied by G, and a (2) + a (2) _&#x3E; m &#x3E; 0, we
get

But by hypothesis, thus, choosing
we have
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Since u2 - v~ o ~ 0 and it is a supercaloric function in 0}, it follows
that a ~2~ ~ a _ . By Hopf maximum principle we have a ~2&#x3E; &#x3E; a + and so

This inequality and (4.1) give us a contradiction, and so the Theorem is
proved.

Now, we show the regularization in space that is the defect angle in
space is as small as we prefer and so the free boundary is a e1 domain in
space. Operating as in the Lemma 13 in [2], and supposing that Hi S
~ C a aa m’ c * to may apply the Lemma 3, we have the following:

LEMMA 4. Let u be a viscosity solution to a free boundary problem
in Bl x ( -1, 1), monotone increasing in every direction r E r( en , 9 , 
(elliptic cone with axis en and aperture 6 in space and B t in time) where
0  e 0 ~ 8 t ~ B  n/2. Then there exist c , C &#x3E; 0 and a unit vector v 1 such
that in Bl/2x(-I,I), the function ul ( x , t ) : _
= u( x , c d 2 t ) is monotone increasing along every direction i E

Er(vl, el, 0 t) with

We note that Hl is the Holder constant of G1«x, t ), t ), t ),
v(x, c~2t), 

Applying Lemma 4 inductively to the function

(~ and 6 like in the previous Lemma), we obtain:

THEOREM 5. Let u be a viscosity solution in Bl x ( -1, 1 ). Then for
each time level t E ( -1, 1 ), the surface Ft = F n ~ t ~ is a e1 1 surface.

5. Regularization in space-time.

The results of previous section, in particular the fact that the defect
angle in space can be made as small as we want, permit us to exploit the
Lemma 2 and to obtain the regularization in space-time.

LEMMA 6. Let u be a viscosity solution in Bl x ( -1, 1 ) of a free
boundary problem such that:
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i) u is monotone increasing in any direction of a space cone

ii) There exist constants cl &#x3E; 0 and A, B such that u is monotone

increasing along the directions et + Ben and - et - Aen with 0  B -

- A  c103BC.

Then, if , exist

constants cl, C2, C positive and AI, B1 1 depending only on 00 and n, and
a spatial unit vector v 1, such that, in Bl/2 x ( - Cd/2,u , 

a) u is monotone increasing in any direction í E T x ( v 1, 81 ), with

1.=~/2-el~~-c1~2/,u.
b) u is monotone increasing along the directions et + Bl v 1 and

1 with

PROOF. We recall that to apply Lemma 2, it is necessary that H 
 ~S °~3 and 6 «f.l3/a, and to apply Lemma 3 to the function w(x, t ) =

= u x , a t , one needs to have H Then the proof is theB y /
same as that of the Lemma 14 in [2].

PROOF OF THEOREM 1. If A is very small, then

isfies the hypotheses of the Lemma 6. In fact, by Lemma 4 and Theorem
5 it is possible to where c « 1 is a constant such
that

are the defect angle in space and in time respectively. By
3-a

(5.1 ) we have that 80 03BC3/a0, 803  1 and ð 0« 1. Moreover, decreas-
ing £ with 80 and 03BC0 fixed, if necessary, we obtain Ho 
 where Ho is the Holder constant of the
function t ). We want to apply Lemma 6 inductively to the functions

with keN. We need that for every
k E N
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and

where Hk is the Holder constant of the G~ associates to the viscosity sol-
ution uk ( x , t ), d k and fl k are the defect angle in space and in time re-
spectively, to the step k.
We prove that (5.2) holds.

KI - --

We consider the function where cl is the con-

stant in the Lemma 6, such We have 0 
 h(x)  1 for each x E ( o , 1/Ci).

Since d o « ,~ o~a , choosing c2  ( c2 , cl a/3 ) 
obtain

Then proceeding in this way, for each &#x3E; 1 we have

Now we show (5.3).
We know that

We suppose that 1 then to the

step k - 1, applying Lemma 6, we have (

Since , where we get:

and so

To obtain it is sufficient that

Since, by (5.1 ), we have
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then

Finally, we show that .
We have:

By (5.1) last inequalities hold, in fact

Therefore (5.3) holds and so it is possible to apply Lemma 6 to the uk.
In such way we define the sequences f (5 k 1, fU k I and

9 k ) (spatial cones with axis v k and opening 0 k) which satisfy in

j the following properties:

i) u is monotone increasing along the spatial directions i E

e

ii) u is monotone increasing along the direction et + Bk v k and
- et - Ak v k where 0 Cl fl k ;

iii) the sequences {8k} and are such that

Then, from iii) we deduce

for every p &#x3E; 0 small enough. This asymptotic behaviors correspond ex-
actly to the modulus of continuity of and Dt f in Theorem 1. Now
applying the results of K. Widman [17], since ut is bounded and for each
t E ( -1, 1) the set Liapunov-Dini domain we obtain, at
each level time, that V xu:t are continuous up to the free boundary.
Therefore, exploiting the free boundary condition the proof is easily
completed.
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