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Stability Estimates for a Linearized
Muskat Problem.

C. MAGNI (*)

ABSTRACT - In this paper we study the problem obtained by the linearization (in a
particular geometry) of the classic Muskat problem, a free boundary problem
which models the piston-like displacement of oil by water in a porous medium.
We show that the stability of the linear problem depends on a parameter
which is the ratio of the viscosities of the two fluids (this fact agrees with the
experimental behavior of the displacement front). We also prove that the ill-
posed case can be stabilized (according to Tikhonov) prescribing a priori
bounds on the solutions.

1. Introduction.

One of the commonly employed devices in oil recovery consists in the
forced injection of water into the oil reservoir. The resulting under-
ground motion, called piston-like displacement, consists in the displace-
ment of one fluid (the oil) by another (water). It was modelled in 1934 by
M. Muskat [11, 12] by means of a free boundary problem where the nor-
mal velocity of the interface is proportional to the normal derivative of
the solution of a Dirichlet problem for an elliptic operator.

Let Q = U S~ 2 (t) U :E(t) with where Q 2(t)
are regions occupied by oil and water respectively and :E(t) is the

interface.

(*) Indirizzo dell’A.: Dipartimento di Matematica, via Saldini 50, 20133 Mila-
no, Italy.
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Let also

where

k = permeability of the porous medium to the fluid,
~ = porosity of the medium,
,u w = viscosity of water,
¡.,t 0 = viscosity of oil.

Then we define

and let u be the fluid pressure; it solves, at any fixed time, the following
transmission problem

whose surface of discontinuity moves in time following the evolution
equation

where V1i is the normal velocity of 
The Muskat problem consists in equations (1) and (2).
The aspect of this problem we are most interested in is the analysis of

the free boundary motion. This point of view can be justified by the ex-
perimental fact that, during the displacement of a fluid contained in a
porous medium by another less viscous one, the displacement front may
become unstable. In the present case, when ,u w  ,u o, protuberances oc-
cur that may advance through the average front (this effect is commonly
referred to as fingering). An understanding of the fingering phe-
nomenon is crucial as its occurrence poses severe limitations to the effec-
tive oil recovery from the reservoir. The process commonly used to avoid
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this phenomenon consists in increasing the viscosity of the water inject-
ed in the reservoir by means of some additives.

This problem was previously studied in the sixties by N. Verigin [15],
J. S. Aronofsky [3] and A. E. Scheidegger [13, 14]. Then, around 1990,
L. Jiang, Z. Chien and J. Liang [8, 9] published some significant papers
on a weak formulation of the multidimensional case, and on an approxi-
mating Muskat model. Recently J. Mossino and F. Abergel have pub-
lished some important papers on the argument. Some extension of the
Muskat problem to the parabolic case has been studied by W. Fulk and
R. B. Guenther [7], J. Cannon and A. Fasano [5] and L. C. Evans [6].

In this paper we study the relationship between the ratio of the vis-
cosities and the stability of the linear problem derived from the Muskat
problem.

When the geometry of the system is simple, the Muskat problem has
particular solutions (more or less explicit).

We consider the case when the domain is a strip in II~n

Here the surface can be described by the function

and, if initially it is a plane orthogonal to the y-axis, ao (r) = co , the prob-
lem has the particular solution, independent on x,

that is to say the free boundary remains always an orthogonal y-axis
plane; this can be shown by routine calculations.

The Muskat problem can be linearized near this solution: taking

and taking the first order approximation to all the functions in the equa-
tions (1) and (2) we can find the problem satisfied by the perturbation

t).
In this paper we study the properties of this problem: we will find

that it turns out to be well-posed or ill-posed (just like the backward heat
diffusion problem) depending on wheter the parameter y is smaller or
greater than one. When y &#x3E; 1 we can stabilize the problem according to
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Tikhonov’s definition: in fact we will prove the stability of a class of sol-
utions with a priori bound on the gradient.

2. The linearized problem.

We notice that in problem (1) the time appears only as a parameter.
For every fixed t &#x3E; 0, we introduce the auxiliary unknown function

so that problem (1) can be reformulated as follows:

with the condition

When a(r, t ) = c ( t ) problem (3), (4) takes the solution:

with

Then we suppose that the relevant quantities of the problem have an ex-
pansion of this type

Put such expressions in problem (3), (4) and keep the first order approxi-
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mation ; then taking the Fourier transform of (3) and (4), by routine cal-
culation [see 10] we get

where

The linearization of the Cauchy problem (2) leads to the following
problem

where

Denoting by o(_~, t) the partial Fourier transform with respect to x of
o (x, t ) we get

whose solution is

Taking the inverse Fourier transform in (8) we obtain the formal sol-
ution to problem (6).

Let us now formulate problem (6) in the appropriate functional
spaces.
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DEFINITION. We say that u E HS(Rn), with s E R + , if

where û is the Fourier transform of u.
The linearized Muskat problem:

we are given find o E C( [ 0 , T], HS(Rn» such that (6) is

satisfied.

Now, saying that the problem is well posed means that the operator

which maps the solution to the date, is bijective and that the inverse
operator

is continuous.

To study the linearized operator it is advisable to investigate first the
properties of the symbol a(~, t), given by (5).

Let us define for convenience

- If y = I then ~ ~)=0.
We note that in this case the solution is

that is, when the fluids have the same viscosity, for the linearized prob-
lem the interface moves at a constant velocity conserving the same
shape.

- If y  1 then t) &#x3E; 0 for every (~, t).

It is an increasing function I with positive minimum b(t) =
= ( 1 - y) % I = 0 decreasing in time and the oblique asymptote

a(t) -

g(t) = ( 1 y) ’ a1 |E I with an inclination which decreases in time.
( 1 + y) a(t) -
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It is a decreasing function I with negative maximum b(t) =
decreasing in time and the oblique asymptote

with an inclination which decreases in time.

Then we obtain some estimates of a(~, t) I independent on time.

LEMMA 1. There exist positive constants m and M, independent
on tirne, such that the inequalities

hold for every t E [ 0, T].

PROOF. Using the expression of g(t) and b(t) we easily derive the fol-
lowing estimate

that is

In the case y  1 since we have

which easily implies that: there exist positive constants cl , C2 &#x3E; 0 such

that

So by using

we arrive at the desired result.

In the case y &#x3E; 1 since 1 , 1 B 1 we have
a(0) a(t) L

and proceeding as in the previous case we complete the proof.
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COROLLARY. Ta(t) is an elliptic pseudodifferential operator of the
first order, for every t E [ 0, T].

3. Stability of the linearized problem.

By lemma 1 we easily obtain the following result.

THEOREM 1. For every y ~ 1 and for every s E Rn the operator

defined by

is bounded with bounded inverse.

Moreover there exist two positive constants k1, k2 &#x3E; 0 independent
on time, such that

PROOF. From the definition of the operator it follows that

and recalling that when y - 1 is a(~, t) # 0, we have

Moreover
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Then, by taking k1 = 1 and 1~2 = 1 , we complete the proof, a
’ " M m

To go on the following lemma is useful.

LEMMA 2. If y  1 then the estimate

holds, where

PROOF. We know that if y  1

Hence

From the expression

we obtain the following result:

THEOREM 2. If Y  1 then

If y &#x3E; 1 then
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PROOF. If y  1 then

Hence

On the other hand, if y &#x3E; 1, recalling that a(~, t )  0, we have

and then

Hence

THEOREM 3. If y  1 then problems (6) is well-posed.
If y &#x3E; 1 then problem (6) is ill-posed.

PROOF. By theorem 2 it follows that, if y  1, for every 
there exists a unique corresponding inverse image Q (x, t) such

that

Then

If y &#x3E; 1 then the operator which maps Q(x, t ) to Q o (x) is not surjective be-
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cause a random choice of does not guarantee that

To make it happen, for example, ~o(~) has to go to zero faster than

at infinity, and this is just a limitation on the choice

of data.
But even if we were to limit the range of the operator in a suitable

way, the problem would still not be stable. j t B

In fact, since, for every t E [ o , T], the function

not bounded on R, it follows that no constant c &#x3E; 0 such that 
’

llellC([0, T], Hs)  Clle0))Hs
exists.

4. Stabilization.

In the case y &#x3E; 1 we will prove that the ill-posed problem can be sta-
bilized using the Tikhonov stabilization technique: the continuity of the
inverse linearized operator can be restored by prescribing some global
bounds to solutions.

We will show that we can find a solution subspace 
with this property: if we call WA the W - image by A and Aw

the restriction of A to the set W, the operator

which is the inverse of Al,y, turns out to be bounded.

THEOREM 4. Let

where f ’ is the distributional derivatives off I.

Then, for every solution t) of the linearized Muskat problem such
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that o ( t ) E W, and for every t E [ 0, T], we have

where

PROOF. Saying that E W means that

Furthermore, saying that o is a solution means that that is

Then
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Moreover if y &#x3E; 1

for every t and

Then

Finally

THEOREM 5. If

then the operator Bw: is bounded and the following
estimate:

holds, for every such that 0 1.
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PROOF. Theorem 4 has shown that

hence

By choosing

we obtain

Because of

we have that Bj,y is bounded at the origin.o
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