@article{RSMUP_2001__106__65_0, author = {Novo, S\'ebastien and Novotn\'y, Anton{\'\i}n and Pokorn\'y, Milan}, title = {Some notes to the transport equation and to the {Green} formula}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {65--76}, publisher = {Seminario Matematico of the University of Padua}, volume = {106}, year = {2001}, mrnumber = {1876213}, zbl = {02216799}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2001__106__65_0/} }
TY - JOUR AU - Novo, Sébastien AU - Novotný, Antonín AU - Pokorný, Milan TI - Some notes to the transport equation and to the Green formula JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2001 SP - 65 EP - 76 VL - 106 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2001__106__65_0/ LA - en ID - RSMUP_2001__106__65_0 ER -
%0 Journal Article %A Novo, Sébastien %A Novotný, Antonín %A Pokorný, Milan %T Some notes to the transport equation and to the Green formula %J Rendiconti del Seminario Matematico della Università di Padova %D 2001 %P 65-76 %V 106 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2001__106__65_0/ %G en %F RSMUP_2001__106__65_0
Novo, Sébastien; Novotný, Antonín; Pokorný, Milan. Some notes to the transport equation and to the Green formula. Rendiconti del Seminario Matematico della Università di Padova, Tome 106 (2001), pp. 65-76. http://archive.numdam.org/item/RSMUP_2001__106__65_0/
[1] Existence results in Sobolev spaces for a stationary transport equation, Ricerche di Mathematica, Vol. in honour of Prof. Miranda (1987), pp. 173-184. | MR | Zbl
,[2] L. LIONS, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), pp. 511-547. | MR | Zbl
- P.[3] Analysis of a two dimensional grade-two fluid model with a tangential boundary condition, Journal des Math. Pures et Appl., 78 (1999), pp. 981-1011. | MR | Zbl
- ,[4] About the steady transport equation, in: Proceedings of Fifth Winter School at Paseky, Pitman Research Notes in Mathematics (1998), pp. 118-146. | MR | Zbl
:[5] Lemme de Friedrichs. Théorème de densité résultant du Lemme de Friedrichs, Rapport de stage dirigé par C. Goulaouic, DEA Université de Rennes (1967).
- ,