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Torsion Groups in Cotorsion Classes.

LUTZ STRÜNGMANN (*)

ABSTRACT - For torsion-free abelian groups G of arbitrary rank we discuss the
class R C(G) of all torsion groups T satisfying Ext (G , T) 40, that is the sub-
class of all torsion groups of the cotorsion class cogenerated by G . The main
question we consider is when for such G there exists a subgroup of the ratio-
nals Z’R’Q such that R C(G) 4R C(R).

Introduction.

Throughout this paper we work in the category Mod-Z of abelian
groups. All terminology used here can be found in [F1], [F2] and
[EM].

Cotorsion theories for abelian groups have been introduced by Salce
in 1979 [S]. Following his notation we call a pair (F, C) a cotorsion theory
if F and C are classes of abelian groups which are maximal with respect
to the property that Ext (F , C) 40 for all F� F, C� C.

Salce [S] has shown that every cotorsion theory is cogenerated by a
class of torsion and torsion-free groups where (F, C) is said to be cogen-
erated by the class A if C 4 A»4 ]X�Mod-ZNExt (A , X) 40 for all A�
� A( and F 4» (A» ) 4 ]Y� Mod-ZNExt (Y , X) 40 for all X� A»(. Ex-
amples for cotorsion theories are: (Mod-Z , D) 4 (»(G » ), G » ) with G4

4 5
p�P

Z(p) where D is the class of all divisible groups and P is the set of

all prime numbers, (L, Mod-Z) 4 (»(Z» ), Z» ) where L is the class of all
free groups, and the classical one (R F, C O) 4 (» (Q» ), Q» ) where R F is
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the class of all torsion-free groups and C O is the class of all (classical) co-
torsion groups. In view of the last example the classes F and C of a cotor-
sion theory (F, C) are said to be the torsion-free class and the cotorsion
class of this cotorsion theory.

In this paper we shall restrict to cotorsion classes cogenerated by a
single torsion-free group G and turn our attention to the subclass of all
torsion groups of the cotorsion class cogenerated by G . This class was
denoted by R C(G) and first studied by Wallutis and the author in
[SW].

A characterization of these classes is obviously closely related to the
solution of the Baer problem (e.g. see [F2]); put into our context it says
that R C(G) is maximal, i.e. R C(G) 4F , where F is the class of all torsion
groups, if and only if G is free.

Recall that torsion-free groups of rank-1 can be indentified with sub-
groups of the rationals Q and are therefore also called rational groups.
Using a result by Salce [S] a full characterization of R C(R) for some
given rank-1 group was obtained in [SW]. Introducing the quasi-reduced
type type qr (R) of an rank-1 group R it was shown that R C(R) 4R C(R 8 )
if and only if type qr (R) 4 type qr (R 8 ) for any rank-1 groups R , R 8 ; when
representing the type of R by type(R) 4 (rp )p�P the quasi-reduced type
of R can be represented by type qr (R) 4 (sp )p�P with sp 4rp whenever
rp 40 or rp 4Q and sp 41 otherwise. This characterization of the classes
R C(R) for rank-1 groups had immediate consequences for completely
decomposable groups. Therefore, it is of particular interest to know
when the class R C(G) for a given torsion-free group G is generated by a
rational group R , i.e. R C(G) 4R C(R) for some rational group R .

After we shall have considered some basic facts in section 1 we define
the class R of all torsion-free groups G such that RC(G) is generated by a
rational group, i.e. R 4 ]G torsion-free : RC(G) 4RC(R) for some ratio-
nal group R’Q(. We will first show in section 2 that all torsion-free
groups of finite rank belong to R. In fact we are able to prove that any tor-
sion-free group G of finite rank satisfies RC(G) 4RC( OT (G) ) where
OT (G) denotes the outer-type of G . Recall that the outer-type of G is de-
fined to be the supremum of all rank-1 torsion-free quotients of G . We shall
use this result to show that for almost all rational groups R there is an in-
decomposable almost completely decomposable group G of arbitrarily
large rank satisfying RC(G) 4RC(R). Moreover, we show that if R is di-
visible by at least one prime p then there is even an indecomposable homo-
geneous group G of arbitrarily large rank with R C(G) 4R C(R). Finally,



Torsion groups in cotorsion classes 37

for any rational group R which is non-idempotent (i.e. End (R) Ò R) an
indecomposable group G of given rank n is constructed such that G is
homogeneous of type R and R C(G) 4R C(R). This shows that Griffith’s
solution of Baer’s problem (see [G]) cannot be generalized to homoge-
neous groups of non-idempotent type.

In section 3 we consider torsion-free groups G of countable rank and
extend the notion of outer-type in a suitable way; OTG is defined to be
the set of all quasi-reduced outer types of finite rank pure subgroups of
G . Using this notion a criterion is given when G� R. A countable tor-
sion-free group G satisfies R C(G) 4R C(R) for a rational group if and
only if the supremum of OTG exists and OTG is Q-closed which means
that whenever P is an infinite set of primes and for all p�P there exists
R�OTG such that x p

R (1) 4Q , then there exists R�OTG such that
x p

R (1) c0 for almost all p�P . It turns out that the class R is no longer
closed under direct summands if we restrict to countable groups.

Finally, we prove in section 4 a very technical necessary and suffi-
cient condition for torsion-free groups of arbitrary rank to belong to R.
Therefore, we extend the notion of Q-closed to a condition on the van-
ishing of certain Ext-groups.

Let us begin with some easy facts.

1. Preliminaries.

In this section we first recall the definition of the class R C(G) for a
given group G as it was given in [SW]. Moreover, we introduce two relat-
ed classes of groups and recall some easy and known results adjusted to
these notations.

For an arbitrary group G the classes G » and »(G ») are defined by
G»4]X�Mod-ZNExt(G,X)40( and »(G» ) 4 ]Y�Mod-ZNExt(Y , X) 4

40 (X�G »(, respectively. Due to Salce [S] the pair (»(G » ), G » ) is
called the cotorsion theory cogenerated by G. In view of the classical co-
torsion theory (R F, C O) where C O 4Q» is the class of all cotorsion
groups and R F 4»(Q» ) is the class of all torsion-free groups, we also
call G » the cotorsion class cogenerated by G. As we have seen in the in-
troduction it makes sense to restrict our attention to the cotorsion class-
es cogenerated by torsion-free groups and furthermore to its subclass of
all torsion groups.

Let F be the class of all torsion groups. In [SW] the class R C(G) was
defined for any group G as R C(G) 4G »OF , the class of all torsion
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groups belonging to the cotorsion class G » cogenerated by G . It is well
known that G » as well as F are closed under epimorphic images and ex-
tensions (see [F1] and [S]). Hence we immediately have the following
(see also [SW]):

LEMMA 1.1. For any group G the following are true:

(i) R C(G) is closed under epimorphic images;

(ii) R C(G) is closed under extensions, especially under finite di-
rect sums;

(iii) if G is torsion-free, then R C(G) contains all torsion cotorsion
groups, i.e. R C(Q) 4 C O OF’R C(G).

Moreover, an easy and well-known lemma is sometimes very useful.
First recall that the basic subgroup B of a torsion group T is the direct
sum B4 5

p�P
Bp of the basic subgroups Bp of the p-components Tp ; for

each prime p , Bp is a direct sum of cyclic p-groups, Bp is a pure subgroup
of Tp and the quotient Tp /Bp is divisible (see [F1]). The proof of the fol-
lowing result is left to the reader (see also [SW]).

LEMMA 1.2. Let T be a torsion group and B’T a basic subgroup of T .
Then, for any group G , T is an element of RC(G) if and only if B is.

In [SW] the class R C(G) was studied for torsion-free abelian groups
G , in particular for subgroups R of the rationals Q and for completely
decomposable groups. Recall that the quasi-reduced type typeqr (R) of a
type R is defined as the subgroup S of Q such that x p

S (1) 41 if 0 c

cx p
R (1) cQ and x p

S (1) 4x p
R (1) else (p a prime).

LEMMA 1.3 (Strüngmann-Wallutis, [SW]). Let R be a rational
group with x(R) 4 (rp )p�P and let T4 5

p�P
Tp be a reduced torsion group

with p-components Tp .
Then Ext (R , T) 40 if and only if the following conditions are

satisfied:

(i) Tp is bounded for all p such that rp 4Q ;

(ii) Tp 40 for almost all p such that rp c0.
In particular, R C(R) 4R C( typeqr (R) ) and for two rational groups

R and S we have R C(R) ’R C(S) if and only if typeqr (R) F

Ftypeqr (S).
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It was shown in [SW] that any countable torsion-free abelian group G
satisfies R C(G) 4R C(C) for some completely decomposable group C .
Moreover, for a large class of torsion-free groups G it was proved that
R C(G) 4R C(R) for some rational group R . Motivated by these results
we introduce the following classes of torsion-free abelian groups.

DEFINITION 1.4. Let R F be the class of all torsion-free abelian
groups. Then

(i) ÷4 ]G�R F: R C(G) 4R C(C) for some completely decompos-
able group C(;

(ii) R4]G�RF : RC(G)4RC(R) for some rational group R’Q(;

(iii) R S 4 ]G�R F : R C(G) 4R C(Tst(G) )(, where Tst(G) denotes
the typeset of G and R C(Tst(G) ) 4R C g 5

R�Tst(G)
Rh .

Clearly R ’÷ and R S ’÷ and it was shown in [SW] that any count-
able torsion-free group belongs to ÷ but it is undecidable in ZFC
whether or not ÷4R F. Moreover, the following is a collection of the
main results in [SW]. Recall that a torsion-free group G is a Butler group
if Bext1 (G , T) 40 for all torsion groups T (for details on the functor
Bext1 and Butler groups see [F3]). Moreover, G satisfies the torsion ex-
tension property if for every pure subgroup H of G and every torsion
group T the induced homomorphism Hom (G , T) KHom (H , T) is
surjective.

LEMMA 1.5 (Strüngmann-Wallutis, [SW]). The following hold.

(i) the class R S contains all Butler groups of arbitrary rank;

(ii) the class R contains all torsion-free groups of finite rank sat-
isfying the torsion extension property, hence all Butler groups of finite
rank.

Nevertheless, the next example which can be found in [F2, Example 5
on p. 125] shows that the class R S is ugly although it contains the nice
subclass of all Butler groups.

EXAMPLE 1.6. Let p be a prime and p a p-adic integer, not a ratio-
nal; say p4s0 1s1 p1R1sn p n 1R with 0 Esi Ep . Moreover, let
x1 , x2 be linearly independent elements and, for each n�N , let
yn 4p 2n (x1 1 (s0 1s1 p1R1sn21 p n21 ) x2 ).
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We define G by

G4 ax1 , x2 , y1 , y2 , R , yn , Rb ’Q(p) x1 5Q(p) x2 .

It can be easily verified that G is indecomposable and homogeneous of
type Z (see [F2]). Also, G is not a Butler group since homogeneous But-
ler groups are completely decomposable.

Moreover, we have R C(G) 4R C(Q(p) ) (see [SW, Example 4.5]), hence
G�÷ but G�R S, else G would be free by Griffith’s solution of the Baer
problem (see [G]).

Now put H4G5Q(p) , then Tst (H) 4 ]Z , Q(p) ( and clearly
R C(H) 4R C(Q(p) ) 4R C( Tst (H) ), hence H�R S.

COROLLARY 1.7. The class R S is neither closed under direct sum-
mands nor extensions.

PROOF. In the Example 1.6 the group H�R S but its direct summand
G does not belong to R S. Moreover, the group G from Example 1.6 shows
that R S is not closed under extensions. r

Since the group G from Example 1.6 is not a Butler group it follows
that H�R S is not a Butler group and hence the class R S strictly con-
tains the class of all Butler groups which answers Question 4.7 from
[SW] negatively.

We are now ready for the next section in which we will consider tor-
sion-free groups of finite rank and show that the class R behaves much
nicer than R S.

2. Torsion-free groups of finite rank.

In this section we shall first show that the class R contains all finite
rank torsion-free groups. Let us begin with an easy lemma.

LEMMA 2.1. The following are equivalent, where R F F denotes the
class of all torsion-free groups of finite rank:

(i) R OR F F is the class of all torsion-free groups of finite
rank;

(i) R OR F F is closed under extensions;

(iii) R OR F F is closed under subgroups.
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PROOF. The implications (i) ¨ (ii) and (i) ¨ (iii) are trivial. To show
(iii) ¨ (i) notice that any finite rank torsion-free group can be embedded
into its divisible hull which is obviously a member of R. The remaining
implication (ii) ¨ (i) is easily seen by induction on the rank and left to
the reader. r

To continue we need Baer’s Theorem from [B].

LEMMA 2.2 (Baer, [B]). Let T be a torsion group and G a torsion-
free group such that Ext (G , T) 40. Then the following hold:

(i) if ]p1 , R , pi , R( is an infinite set of different primes for
which pi TET , then G contains no pure subgroup S of finite rank such
that G/S has elements c0 divisible by all pi ;

(ii) if, for some prime p , the reduced part of the p-component of T
is unbounded, then G contains no pure subgroup S of finite rank such
that G/S has elements c0 divisible by all powers of p .

Moreover, if G is countable, then (i) and (ii) suffice for Ext (G , T) to
be zero. r

We obtain the following lemma.

LEMMA 2.3. Let G be a countable torsion-free group and H a pure
subgroup of G of finite rank. If T is a torsion group such that T�R C(G),
then T�R C(G/H).

PROOF. Let H’G and T be given as stated such that T�R C(G). As-
sume that T�R C(G/H), then since G/H is torsion-free there exists a
pure subgroup K/H of G/H of finite rank such that (G/H) /(K/H) contains
an element x violating one of the conditions from Lemma 2.2. But
(G/H) /(K/H) `G/K is torsion-free, hence G contains a pure subgroup K
of finite rank such that G/K contains an element violating one of Baer’s
conditions. Since G is countable we conclude that Ext (G , T) c0, hence
T�R C(G) - a contradiction. r

THEOREM 2.4. Let G be a torsion-free group of finite rank. Then
R C(G) 4R C(R) for some rational group R .

PROOF. We induct on the rank n of G . If G has rank one, then the
claim is trivially true. Hence assume G has rank nD1. We choose a pure
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subgroup H of G of rank n21 and obtain G/H4S’Q . Now clearly

R C(S)OR C(H) ’R C(G) and R C(G) ’R C(H) .

But by Lemma 2.3 we also have that R C(G) ’R C(S), hence we obtain
R C(G) 4R C(H)OR C(S). By induction hypothesis R C(H) 4R C(R 8 ) for
some rational group R 8 . Thus R C(G) 4R C(S)OR C(R 8 ) 4R C(R)
where R4SOR 8’Q . r

The next theorem shows that we can choose R in Theorem 2.4 to be
the outer type of G . Recall that for a torsion-free group G of finite rank
the outer type OT (G) is defined as follows: Let g1 , R , gn be a maximal
linearly independet subset of G and put Hi 4 ag1 , R , gi×, gi11 , R , gn b*’
’G , where g× means that the element is missing. Then put Si 4G/Hi ’Q
and define OT (G) 4 sup ]S1 , R , Sn (. The set ]Si : iGn( is called the
cotypeset of G . Note that for a pure subgroup H of G we have OT (G) F

FOT (H). Similarly, the inner type IT (G) of G is defined as IT (G) 4

4 inf ]agi b*: iGn(.

THEOREM 2.5. Let G be a torsion-free group of finite rank and
OT (G) its outer type. Then R C(G) 4R C( OT (G) ).

PROOF. By Theorem 2.4 we know that R C(G) 4R C(R) for some ra-
tional group R . We induct on the rank n of G to show that we can choose
R4 OT (G). For rational groups S it is trivial since OT (S) 4S . Hence
assume G is of rank nD1. We let Si be defined as in the definition of
OT (G). Since G is of finite rank we obtain by Lemma 2.3 R C(G) 4

4R C(R) ’R C(Si ) for every iGn and therefore R C(G) 4R C(R) ’
’ 1

iGn
R C(Si ) 4R C(OT (G) ) since OT (G) is the supremum of the types Si .

Now assume that R C(R) is strictly contained in R C(OT (G) ), then there
is T�R C(OT (G) )0R C(R). Thus T�R C(Si ) and hence T�R C(Hi ) for
any iGn . But OT (G) F OT (Hi ), hence R C(OT (G) ) ’R C(OT (Hi ) ) 4

4R C(Hi ) by induction hypothesis and therefore T�R C(Hi ) - a contradic-
tion. r

Using a result due to Warfield (see [W]) we can determine the outer
type and hence R C(G) explicitly for a torsion-free group G of finite
rank.
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LEMMA 2.6 (Warfield, [W]). Let G be a torsion-free group of finite
rank and let F be a free subgroup of G such that G/F is torsion, i.e.

G/F4 5
p

Tp with Tp 4Z(p ip , 1 )5R5Z(p ip , np )

and 0 G ip , 1 GRG ip , np
GQ . Then OT (G) 4 [ (ip , np

) ] and IT (G) 4

4 [ (ip , n1
) ].

We will now show that for almost all types R the class R C(R) can be
realized as R C(G) for an indecomposable, almost decomposable group of
rank n for any natural number n . This proves that the structure of the
group G is less effected by R C(G) than for example by G » even for finite
rank groups in R S O R.

LEMMA 2.7. If Q Ò R is a type such that R Ò Q(P) for any set P of
primes of cardinality at most two, then there exists for any natural
number n an indecomposable, almost decomposable group G of rank n
such that R C(G) 4R C(R).

PROOF. For n41 there is nothing to prove taking G4R . Hence as-
sume that nD1. We may assume without loss of generality that R is in
reduced form, i.e. R4 typeqr (R). If R Ò Q(P) for any finite set P of
primes, then we can give an explicite example. We will use the construc-
tion of an almost completely decomposable group as given in [A,
Example 2.2]. Hence it is enough to find incomparable types Ai (iGn)
such that the supremum of the Ai’s is exactly R . But R Ò Q(P) for any fi-
nite set P of primes implies that there are infinitely many primes p such
that x p

R (1) 4Q or there are infinitely many primes p such that x p
R (1) 4

41. Let P be the set of these primes. We divide P in n disjoint infinite sub-
sets Pi and define the types Ai by letting

x p
Ai (1) 4x p

R (1) for p�Pi

x p
Ai (1) 40 for p� 0

jc i
Pj

x p
Ai (1) 4x p

R (1) else .

Since Q Ò R we may assume without loss of generality that there is a
prime p such that x p

Ai (1) 40 for all i . Then clearly the supremum of the
Ai’s is R and by [A, Example 2.2] there exists an indecomposable almost
completely decomposable group G of rank n such that Tst (G) is the meet
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closure of ]A1 , R , An (, hence Lemma 1.5 implies

R C(G) 4R C(Tst (G) ) 4R C(R) .

If R`Q(P) for some finite set P of primes of cardinality greater than
two, then the existence of the desired almost completely decomposable
group follows from [AD, Theorem 1.8]. Divide P into two non-empty sets
P1 and P2 and choose p�P2 . Put T to be the meet closure of the set
]Q(P1 ) , Q(P2 ) , Q(p) (, then [AD, Theorem 1.8] gives the existence of an al-
most completely decomposable group G of any finite rank n such that the
critical typeset of G is contained in ]Q(P1 ) , Q(P2 ) , Q(p) ( and hence
R C(G) 4R C(R). r

Note that if R Ò Q(P) for some set of primes of cardinality less or
equal to two, then it is known that an indecomposable almost completely
decomposable group G with R C(G) 4R C(R) must have rank at most two
by the structure of the critical typeset (see also Lemma 2.11 and [A, The-
orem 2.3]).

If we don’t require G to satisfy R C(G) 4R C(Tst (G) ), then we can re-
alize any type Q Ò R which is divisible by at least one prime (in order to
exclude Z) as the outer type of an indecomposable homogeneous
group.

LEMMA 2.8. Let Q Ò R be a type such that pR4R for at least one
prime, then there exists for any natural number n an indecomposable
homogeneous torsion-free group G such that R C(G) 4R C(R). More-
over, if S is the type of G , then S7Q(p) 4R .

PROOF. For n41 the claim is trivial, hence assume nD1. Fix the
prime p for which pR4R and let S be the type identical with R but
x p

S (1) 40. We now use a known example (see [F2, Example 5 on p. 125]).
Let H4 5

iGn
Q(p) ai be completely decomposable and homogeneous of

type Q(p) and of rank n . Chosse n21 algebraically independent p-adic
units p 2 , R , p n and let p 1 41. For m41, 2 , R we put

xm 4p 2m (a1 1p 2m a2 1R1p nm an ) �H

where p im 4si0 1si1 p1R1si(k21) p k is the (k21)st partial sum of the
standard form of p i . We define A as

A4 aa1 , R , an , x1 , R , xk , Rb .
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Then A is indecomposable and homogeneous of type Z . Moreover, for
each subgroup B of rank n21 we have A/B`Q(p) . Furthermore, A stays
indecomposable if it is tensored by any rank one group L such that pLc

cL . We put G4S7A to obtain a torsion-free group of rank n which is ho-
mogeneous of type S and for each subgroup C of rank n21 we have
G/C`S7Q(p)

`R , hence OT (G) 4R and therefore R C(G) 4

4R C(R). r

For Q we have a similar realization lemma. Recall that a torsion-free
group G of finite rank is called almost-free if any proper pure subgroup
of G is free.

LEMMA 2.9. For each natural number n there is an indecompos-
able almost-free group G of rank n such that R C(G) 4R C(Q).

PROOF. By a construction due to Corner (see [F2, Exercise 8 on p.
128]) there exists an indecomposable torsion-free group G of rank n such
that G is almost-free and each quotient of rank 1 is divisible, hence
OT (G) 4Q and we are done. r

Note that by the construction in Lemma 2.8 the type of G is as close
to R as possible since G homogeneous of type R would imply IT (G) 4

4 OT (G) and hence [A, Corollary 1.13] implies that G is completely decom-
posable. But if we assume that the type R is non-idempotent, then we can
even do better. Recall that a type R is idempotent if End (R) `R .

LEMMA 2.10. Let R be any non-idempotent type. Then there exists
for any natural number n an indecomposable group G of rank n which
is homogeneous of type R and R C(G) 4R C(R).

PROOF. Since R is non-idempotent there exists an infinite set P of
primes such that 0 Ex R

p (1) EQ . Put S to be the type such that x p
S (1) 4

4xR
p (1) whenever p�P and x p

S (1) 4x p
R (1)11 if p�P . We will show that

there is a torsion-free group G of rank n such that G is homogeneous of
type R and OT (G) 4S , hence G is as desired. By an easy argument (see
e.g. Schultz [Sch]) it is enough to prove that there exists a torsion-free
group H of rank n such that H is homogeneous of type Z and the outer
type of H is Q where Q4 a1/p : p�Pb. Without loss of generality we may
assume that P4P . Let F4 5

iGn
Z be a free group of rank n . We choose

n-tuples ti 4 (a i
1 , a i

2 , R , a i
n ) �F such that
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(i) gcd (a1
i , a i

2 , R , a i
n ) 41;

(ii) Naj
iNGn for all jGn, where NaN denotes the absolute value of a .

Let P4 ]pi : i�v( be an enumeration of the set of primes such that
pi is the i’th prime number. Put G4F1 ati /pi : pi �Pb. Then G is a tor-
sion-free group of rank n and it remains to show that G is homogeneous
of type Z , indecomposable and has outer type Q . The later is easily seen
and hence left to the reader. To prove that G is homogeneous of type Z
let g4 ( g1 , g2 , R , gn ) �G (viewed inside its divisible hull) and assume
that g is divisible by infinitely many primes. Without loss of generality g
is divisible by all pi �P . Then gf ti modulo pi G for all i�v . Thus with-
out loss of generality g1 2a i

1 c0 is divisible by pi . But this can happen
only for finitely many i since a1

i is less or equal to n but pi is the order of
n˜log (n), where log denotes the logarithm with basis 10 - a contradic-
tion. Therefore, G is homogeneous of type Z . It remains to prove that G
is indecomposable. Assume that G4G1 5G2 with Gi c0 and note that
G/F` 5

i�v
Z(pi ). Thus F4F1 5F2 with Fi 4FOGi and hence G/F4

4G1 /F1 5G2 /F2 . But then almost all elements ti must belong either to G1

or G2 which is obviously a contradiction (1). r

As a corollary we obtain a general version of Griffith’s solution of the
Baer problem for groups of finite rank.

COROLLARY 2.11. Let G be a torsion-free group of finite rank and
homogeneous of the idempotent type R . Then G is completely decompos-
able if and only if R C(G) 4R C(R).

PROOF. One implication is trivial, hence assume that R C(G) 4

4R C(R). Since R C(G) 4R C(OT (G) ) we obtain that the quasi-reduced
types of R and OT (G) are equal by Lemma 1.3 but since R is idempotent
this implies that the types R and OT (G) are equal, hence IT (G) 4R4

4 OT (G) and the result follows by [A, Corollary 1.13]. r

COROLLARY 2.12. Let G be a torsion-free group of finite rank. Then
G is free if and only if R C(G) 4R C(Z).

PROOF. Again one implication is trivial, hence assume that R C(G) 4

(1) The author would like to thank Prof. C. Vinsonhaler for indicating the con-
struction to him.
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4R C(Z). To apply Corollary 2.11 we have to show that G is homogeneous
of type Z . But R C(G) 4R C(Z) implies that OT (G) 4Z , hence G must
be homogeneous of type Z . r

Let us note that Corollary 2.11 may fail if we don’t assume that R is
idempotent (see Lemma 2.10), hence Griffith’s solution of the Baer prob-
lem cannot be generalized to homogeneous groups of non-idempotent
type.

Our final well-known example shows that even for the class of finite
rank torsion-free abelian groups we cannot obtain some kind of Krull-
Schmidt theorem using R C.

EXAMPLE 2.13 (Jonsson, [J]). There are indecomposable torsion-
free groups A1 , A2 and B1 , B2 of ranks 1, 3 , 2 , 2 , respectively such that
A1 5A2 4B1 5B2 but R C(Ai ) cR C(Bj ) for i , j� ]1, 2(.

PROOF. The example is well-known and it is easy to check that the
constructed groups Ai and Bi for i41, 2 are almost completely decom-
posable, hence members of the class R S. Since the four groups contain
types of the form Q(p) for different primes p it follows immediately that
R C(Ai ) cR C(Bj ) for i , j� ]1, 2(. r

3. Torsion-free groups of countable rank.

In this section we shall consider torsion-free groups which are count-
able and we will first characterize those which belong to the class R.

LEMMA 3.1. Let G be a countable torsion-free group and T a tor-
sion group. Then T�R C(G) if and only if T�R C(H) for any finite rank
pure subgroup H of G .

PROOF. Clearly T�R C(G) implies that T�R C(H) for any finite
rank pure subgroup H of G . Conversely, assume that T�R C(H)
for every pure subgroup H of G of finite rank. If T�R C(G), then
there exists a pure subgroup H of finite rank of G and an element
x1H�G/H violating one of the two conditions of Baer’s Lemma
2.2. Note that here we need the countability of G . We write ax1Hb*’
’G/H as

ax1Hb*4H 8 /H
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for some pure subgroup H 8 of G of finite rank. Then Lemma 2.2
implies that Ext (H 8 , T) c0, hence T�R C(H 8 ) - a contradic-
tion. r

For our next result we need the following definition which is a rea-
sonable extension of the notion of outer type to groups of countable
rank.

DEFINITION 3.2. Let G be a countable torsion-free group. Then we
define the outer type class OTG of G as

OTG 4 ]typeqr (OT (H) ) : H a pure subgroup of G of finite rank( .

In the following theorem R C(OT G ) means R Cg 5
R� OTG

Rh .

THEOREM 3.3. Let G be a countable torsion-free group. Then
R C(G) 4R C(OT G ). Hence G� R if and only if 5

R� OT G
R� R.

PROOF. By Lemma 3.1 we have that R C(G) 4OR C(H) where H
ranges over all pure subgroups of G of finite rank. But by Theorem 2.5 it
follows that R C(H) 4R C(OT (H) ) 4R C( typeqr (OT (H) ) ) for every pure
subgroup H of G of finite rank. Hence

R C(G) 4OR C(OT (H) ) 4OR C( typeqr (OT (H) ) ) 4R C(OTG )

which finishes the proof. r

An easy corollary is the well-known result of Pontryagin.

COROLLARY 3.4. Let G be a countable torsion-free group. Then G is
free if and only if each pure finite rank subgroup of G is free.

PROOF. One implication is trival, hence assume that any pure sub-
group H of G of finite rank is free. Then OT (H) 4Z , hence by Theorem
3.3 R C(G) 4R C(OT G ) 4R C(Z) and thus G is free by Griffith’s solution
of the Baer problem (see [G]). r

Theorem 3.3 reduces the question of whether or not a countable tor-
sion-free group G belongs to R to completely decomposable groups with
types in quasi-reduced form. Note that the supremum of infinitely many
types need not exist as the following example demonstrates.
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EXAMPLE 3.5. Let P i (i�v) be a system of disjoint infinite subsets
of the primes P . Put Ri 4 a1/p : p�P i b ’Q . Then the types Ri (i�v)
have no supremum.

We need another definition.

DEFINITION 3.6. Let S4 ]Ri : i�I( be a set of types. Then S is
called infinity-closed (Q-closed) if for any infinite set P of primes such
that for all p�P there exists i�I such that x p

Ri (1) 4Q , there exists i�I
such that x p

Ri (1) c0 for almost all p�P .

PROPOSITION 3.7. Let C be completely decomposable with types in
quasi-reduced form. Then C� R if and only if S4 sup (Tst (C) ) exists
and Tst (C) is Q-closed. In this case R C(C) 4R C(S).

PROOF. If the supremum S of Tst (C) exists and is Q-closed, then it
is easily checked that R C(S) 4R C(C) using that all the types of C are
quasi-reduced. Conversely, if R C(C) 4R C(R) for some rational group
R , then we first have to show that the supremum of Tst (C) exists. With-
out loss of generality we may assume that R is in quasi-reduced form.
Hence Lemma 1.3 implies that RFS for any type S� Tst (C) since all
types are quasi-reduced. Now assume that R is not the supremum of
Tst (C). Then there exists a type L such that LER and LFS for all
types S� Tst (C). Therefore there exists

(i) an infinite set of primes P such that x p
R (1) 41 and x p

L (1) 40
for all primes p�P or

(ii) there exists a prime p such that x p
R (1) 4Q and x p

L (1)EQ.

In both cases we easily obtain a contradiction since R C(C) 4

4R C(Tst (C) ) and LFS for every type S� Tst (C). Thus sup (Tst (C) )
exists and clearly Tst (C) must be Q-closed. r

COROLLARY 3.8. Let G be a countable torsion-free group. Then G�
� R if and only if sup (OT G ) exists and OTG is Q-closed. r

PROOF. The claim follows by Theorem 3.3 and Proposition
3.7. r

It is now trivial to see that for groups G�÷ we also have G� R if and
only if sup (Tst (G) ) exists and Tst (G) is Q-closed.

Finally let us remark that in contrast to the finite rank case for
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countable groups also the behavior of the class R is as ugly as the behav-
ior of the class R S as the following examples show.

EXAMPLE 3.9. Let P i (i�v) be disjoint infinite sets of primes. Put
Ri 4 a1/p : p�P i b ’Q and let R4 a1/p : p�P i (i�v)b ’Q . Then the
supremum of the types Ri (i�v) does not exist but if we adjoin R , then
the supremum of ]R , Ri : i�v( exists and is equal to R .

EXAMPLE 3.10. Enumerate all primes by v , e.g. P4 ]pi : i�v(

and let Ri 4 a1/(pi
n ) : n�vb ’Q for i�v . Moreover, let R4 a1/p : p�

�Pb ’Q , then the set ]Ri : i�v( is not Q-closed but the set ]R , Ri : i�
�v( is Q-closed.

Thus a set of types which is Q-closed may contain a subset which is
not Q-closed and the same holds for sets of types such that there supre-
mum exists. We obtain the following corollary which contrasts the finite
rank case.

COROLLARY 3.11. The class of all countable torsion-free groups G�
� R is neither closed under direct summands nor epimorphic images
nor extensions.

PROOF. We take the types Ri (i�v) and R from Example 3.9 or from
Example 3.10 and put C4 5

i�v
Ri . Then C� R by Proposition 3.7. But C5

5R� R, hence the claim follows. r

4. Torsion-free groups of arbitrary rank.

In this section we consider torsion-free groups of arbitrary rank and
try to generalize the results from Section 2 and Section 3, i.e. we are
looking for a characterization of groups G� R. We don’t have a charac-
terization in terms of types any longer as we had in the finite rank and
coutable case but we can characterize the groups by some conditions on
certain extension groups. Let us first recall a basic theorem from [SW]
which characterizes the classes of torsion groups that can appear as
R C(C) for some completely decomposable group C .

THEOREM 4.1 (Strüngmann-Wallutis, [SW]]. Let ÷ be a class of tor-
sion groups. Then ÷4R C(C) for some completely decomposable group
C if and only if the following conditions are satisfied:



Torsion groups in cotorsion classes 51

(i) ÷ contains all torsion cotorsion groups;

(ii) ÷ is closed under epimorphic images;

(iii) 5
n�v

Z(p n ) �÷ if and only if ÷ contains all p-groups for all

primes p;

(iv) If P is an infinite set of primes then, 5
p�P

Z(p) �÷ if and only

if 5
p�P

Tp �÷ for all p-groups Tp �÷ ;

(v) If P is an infinite set of primes such that 5
p�P

Z(p) �÷ then

there exists an infinite subset P 8 of P such that 5
p�X

Z(p) �÷ for all infi-
nite X’P 8 .

PROOF. See Theorem 3.6 in [SW]. r

We will now first give a homological characterization of the groups in
R S which clarifies the connection to Butler groups. We therefore define
the class B(G) for a torsion-free group G as B(G) 4 ]T torsion
: Bext1 (G , T) 40(.

THEOREM 4.2. Let G be a torsion-free group. Then G�R S if and
only if R C(Tst (G) ) ’ B(G).

PROOF. Let G be a torsion-free group such that G�R S. Let C4

4 5
g�G

agb*. We obtain the following exact sequence

0 KKKCKGK0

where the mapping CKG is the obvious one and K is the corresponding
kernel. In fact, this sequence is easily checked to be balanced exact and
hence we obtain the induced sequences

Hom (C , T) K Hom (K , T) KBext1 (G , T) KBext1 (C , T) 40

and

Hom (C , T) K Hom (K , T) KExt (G , T) KExt (C , T)

with the same mapping Hom (C , T) K Hom (K , T) for any torsion group
T . If T�R C(Tst (G) ), then Ext (C , T) 40, hence also Ext (G , T) 40 and
thus the mapping Hom (C , T) K Hom (K , T) is surjective, i.e.
Bext1 (G , T) 40. Hence R C(C) ’ B(G) as claimed. Conversely, assume
that R C(C) ’ B(G). In order to prove that G�R S we have to show that
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R C(C) ’R C(G) to prove G�R S. Therefore let T�R C(C). By assumption
we obtain Bext1 (G , T) 40, hence again the mapping Hom (C , T) K

K Hom (K , T) is surjective and it follows that Ext (G , T) ’Ext (C , T)
which is zero by the choice of T . Hence Ext (G , T) 40 and therefore
T�R C(G). r

An immediate corollary is the following. Recall that a torsion-free
group G is a B1-group if B(G) 4F .

COROLLARY 4.3 (Strüngmann-Wallutis, [SW]). Let G be a B1-group.
Then G�R S.

QUESTION 4.4. To characterize the Butler groups among the
groups in R S one need to know the following: which is the minimal
class of torsion groups 3 such that 3’ B(G) forces G to be a Butler
group?

Our next theorem will give a characterization of the classes that can
appear as R C(R) for some rank-1 group R by adding two more condi-
tions in Theorem 4.1. Therefore we need the following definition.

DEFINITION 4.5. Let ÷ be a class of torsion groups and P1 and P2

two subsets of the primes.

(i) P 4 ]P’P (P infinite)N 5
p�X

Z(p) �÷ for all infinite X’P(;

(ii) We say that P1 and P2 are equivalent (P1 AP2 ) if their sym-
metric difference P1 DP2 is finite;

(iii) For P� P we let

[P] 4 ]Q� P : PAQ(

be the equivalence class of P inside P;

(iv) M÷4 ][P] : P� P(;

(v) For [P], [Q] � M÷ we define [P] ’ [Q] if and only if P is al-
most contained in Q , i.e. P0Q is finite; hence (M÷ , ’) is a partially or-
dered set.

Note that the definition of ’ in (v) is well-defined and so is

a finite union of equivalence classes 0
iGn

[Pi ] 4 k 0
iGn

Pil . But the union
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of infinite many equivalence classes cannot be defined independently
of the chosen representatives!

THEOREM 4.6. Let ÷ be a class of torsion groups. Then ÷4R C(R)
for some rational group R if and only if the following conditions are
satisfied:

(i) ÷ contains all torsion cotorsion groups;

(ii) ÷ is closed under epimorphic images;

(iii) 5
n�v

Z(p n ) �÷ if and only if ÷ contains all p-groups for all

primes p ;

(iv) If P is an infinite set of primes then, 5
p�P

Z(p) �÷ if and only

if 5
p�P

Tp �÷ for all p-groups Tp �÷ ;

(v) If P is an infinite set of primes such that 5
p�P

Z(p) �÷ then

there exists an infinite subset P 8 of P such that 5
p�X

Z(p) �÷ for all infi-
nite X’P 8 ;

(vi) If P is an infinite set of primes such that ÷ contains only
bounded p-groups for p�P , then 5

p�P
Z(p) �÷ ;

(vii) The set M÷ contains a unique maximal element.

PROOF. One implication is almost trivial. If R is a rank-1 group, then
obviously conditions (vi) and (vii) are satisfied; for (vii) define P4 ]p�
�P : x R (1) c0( to see that [P] is maximal in M÷ . Hence it remains to
show the converse implication. As in the proof given in [SW] of Theorem
4.1 define the set

M4 mp�PN 5
n�v

Z(p n ) �÷n
and let S4Q(M) 4 m m

n
: m , n�Z , n is a product of powers of primes

from Mn . Moreover, let [Q] be the maximal element in M÷ and put R4

4 o 1

p
: p�Qp . Note that the type of R is independent of the representative

chosen for [Q]. By the proof of Theorem 4.1 (see [SW]) all we have to
show is that for C4 5

p�M
Q(p) 5 5

P� P
RP we have R C(C) 4R C(S5R)

where Q(p) and RP are defined as in the proof of Theorem 4.1 (see [SW]).
It is easy to see that R C(S) 4R Cg5

p�M
Q(p)h using condition (vi). More-
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over, since Q� P we clearly have R Cg5
P� P

RPh’R C(R). Conversely, if a

torsion group T satisfies Ext (R , T) 40, then Tp 40 for almost all
primes p�Q . But [Q] is uniquely maximal in M÷ and hence any set P� P

is almost contained in Q and therefore also Tp 40 for almost all primes
p�P . Thus Ext (RP , T) 40 which shows R C(R) ’R Cg5

P� P
RPh . r

By Theorem 2.4 any finite rank torsion-free group must satisfy the
conditions (i) to (vii) of Theorem 4.6. It is surprising that condition (vi) is
easily checked for finite rank torsion-free groups (in fact for countable
groups G condition (vi) is equivalent to saying that OT (G) is Q-closed)
but condition (vii) is less obvious and hard to verify.

Note that both conditions (vi) and (vii) may fail in the countable rank
case even for completely decomposable groups. (see Example 3.9 and
Example 3.10).

Finally we state some properties of the set M÷ .

LEMMA 4.7. Let G be a torsion-free group. Then

(i) If [P] � MR C(G) is uniquely maximal, then [P] satisfies: If for
some set of primes X , XOP is finite, then 5

p�X
Z(p) �R C(G);

(ii) If MR C(G) is inductive, then there exists a unique maximal el-
ement [P] in MR C(G) ;

(iii) every chain in MR C(G) is countable.

PROOF. Let TX 4 5
p�X

Z(p) and assume TX �R C(G), then there exists

by [SW, Proposition 3.5] an infinite subset Y of X such that 5
p�Y

Z(p) �

�R C(G) and for every infinite W’Y we have 5
p�W

Z(p) �R C(G). But by

the unique maximality of [P] we obtain that Y is almost contained in P ,
hence XOP is infinite - a contradiction. Thus (i) holds.

The proof of (ii) is trivial: for if [P] and [Q] are distinct maximal ele-
ments, then [PNQ] is again an element of MR C(G) contradicting the max-
imality of [P] and [Q].

Finally, if we have a chain ][Xi ] : i�I( in MR C(G) , then I must be
countable since by definition Xi is almost contained in Xi11 for every i
and the set P of primes is countable. r
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It is not clear for which torsion-free groups G the set MR C(G) is induc-
tive but it seems unlikely that there is a «more natural» characterization
of the groups in R.
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