@article{RSMUP_2002__107__67_0, author = {Enochs, Edgar E. and L\'opez-Ramos, J. A.}, title = {Kaplansky classes}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {67--79}, publisher = {Seminario Matematico of the University of Padua}, volume = {107}, year = {2002}, mrnumber = {1926201}, zbl = {1099.13019}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2002__107__67_0/} }
TY - JOUR AU - Enochs, Edgar E. AU - López-Ramos, J. A. TI - Kaplansky classes JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2002 SP - 67 EP - 79 VL - 107 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2002__107__67_0/ LA - en ID - RSMUP_2002__107__67_0 ER -
%0 Journal Article %A Enochs, Edgar E. %A López-Ramos, J. A. %T Kaplansky classes %J Rendiconti del Seminario Matematico della Università di Padova %D 2002 %P 67-79 %V 107 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2002__107__67_0/ %G en %F RSMUP_2002__107__67_0
Enochs, Edgar E.; López-Ramos, J. A. Kaplansky classes. Rendiconti del Seminario Matematico della Università di Padova, Tome 107 (2002), pp. 67-79. http://archive.numdam.org/item/RSMUP_2002__107__67_0/
[1] Anneaux de Gorenstein et torsion en alègebre commutative, Séminaire d'algèbre commutative 1966/67, notes by M. Mangeney, C. Peskine and L. Szpiro, École Normale Supérieure de Jeunes Filles, Paris (1967).
,[2] Modules have flat covers, to appear in Bull. London Math. Soc. | MR | Zbl
- - ,[3] Coherent rings with finite self-FP-injective dimension, Comm. Algebra, 24 (9) (1996), pp. 2963-2980. | MR | Zbl
- ,[4] How to make Ext vanish, to appear in J. Lond. Math. Soc. | MR | Zbl
- ,[5] Injective and flat covers, envelopes and resolvents, Israel J. Math., 39 (3), (1981), pp. 189-209. | MR | Zbl
,[6] Balanced Functors Applied to Modules, J. Algebra, 92 (1985), pp. 303-310. | MR | Zbl
- ,[7] Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 10 (1993), pp. 1-9. | MR | Zbl
- - ,[8] Covers and envelopes over Gorenstein rings, Tsukuba J. Math., 20 (1996), pp. 487-503. | MR | Zbl
- - ,[9] Relative Homological Algebra, De Gruyter, Berlin - New York (2000). | MR | Zbl
- ,[10] E. E. ENOCHS - O. M. G. JENDA - L. OYONARTE, l and m-dimensions of modules, to appear in Rend. Sem. Mat. Univ. Padova, 105 (2001). | Numdam | MR | Zbl
[11] Cotorsion Theories, Model Category Structures and Representation Theory, preprint.
,[12] Les Foncteurs Dérivés de lim J et leur Applications en Théorie des Modules, Lecture Notes in Math. 254, Springer-Verlag (1972). | MR | Zbl
,[13] Projective Modules, Ann. of Math., 68 (2) (1958), pp. 372-377. | MR | Zbl
,[14] Kontinuerliche Geometrien, Springer-Verlag, Berlin (1958). | MR
,[15] Cotorsion theories for abelian groups, «Symposia Mathematica» Vol. XXIII, pp. 11-32, Academic Press, London - New York (1979). | MR | Zbl
,[16] Relative homological algebra and Abelian groups, Illinois J. Math., 10 (1966), pp. 186-209. | MR | Zbl
,[17] Flat covers of modules, Lecture Notes in Math. 1634, Springer-Verlag, (1996). | MR | Zbl
,