@article{RSMUP_2002__108__79_0, author = {Casella, Emanuela and Trebeschi, Paola}, title = {A global existence result in {Sobolev} spaces for {MHD} system in the half-plane}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {79--91}, publisher = {Seminario Matematico of the University of Padua}, volume = {108}, year = {2002}, mrnumber = {1956431}, zbl = {1058.35175}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2002__108__79_0/} }
TY - JOUR AU - Casella, Emanuela AU - Trebeschi, Paola TI - A global existence result in Sobolev spaces for MHD system in the half-plane JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2002 SP - 79 EP - 91 VL - 108 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2002__108__79_0/ LA - en ID - RSMUP_2002__108__79_0 ER -
%0 Journal Article %A Casella, Emanuela %A Trebeschi, Paola %T A global existence result in Sobolev spaces for MHD system in the half-plane %J Rendiconti del Seminario Matematico della Università di Padova %D 2002 %P 79-91 %V 108 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2002__108__79_0/ %G en %F RSMUP_2002__108__79_0
Casella, Emanuela; Trebeschi, Paola. A global existence result in Sobolev spaces for MHD system in the half-plane. Rendiconti del Seminario Matematico della Università di Padova, Volume 108 (2002), pp. 79-91. http://archive.numdam.org/item/RSMUP_2002__108__79_0/
[1] Solvability of a homogeneous initial-boundary value problem for equations of magnetohydrodynamics of an ideal fluid, (Russian), Dinam. Sploshn. Sredy, 57 (1982), pp. 3-20. | MR | Zbl
,[2] Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 247-273. | Numdam | MR | Zbl
,[3] Kato's perturbation theory and well posedness for the Euler equations in bounded domains, Arch. Rat. Mech Anal., 104 (1988), pp. 367-382. | MR | Zbl
,[4] A well posedness theorem for non-homogeneous inviscid fluids via a perturbation theorem, (II) J. Diff. Eq., 78 (1989), pp. 308-319. | MR | Zbl
,[5] Global classical solutions for MHD system, to appear on Journal of Math. Fluid Mech., Mathematic. | MR | Zbl
- - ,[6] On Classical Solutions of Two-Dimensional Non-Stationary Euler Equation, Arch. Rat. Mech. Anal., 25 (1967), pp. 188-200. | MR | Zbl
,[7] Nonlinear evolution equations and the Euler flow, J. Funct. Analysis, 56 (1984), pp. 15-28. | MR | Zbl
- ,[8] Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo, Sec IA 30 (1983), pp. 63-92. | MR | Zbl
,[9] Weak and Classical Solutions of the Two-dimensional magnetohydrodynamic equations, Tohoku Math. J., 41 (1989), pp. 471-488. | MR | Zbl
,[10] Grundlagen der Hydromechanik, Edition of 1928 Springer, Berlin, 1968. | JFM | MR | Zbl
,[11] On a magnetohydrodynamic problem of Euler type, J. Diff. Eq., 74 (1988), pp. 318-335. | MR | Zbl
,[12] On the Equations of Ideal Incompressible Magneto-Hydrodynamics, Rend. Sem. Mat. Univ. Padova, 90 (1993), pp. 103-119. | Numdam | MR | Zbl
,[13] Navier-Stokes Equations, 2nd Ed., North-Holland, Amsterdam, 1979. | MR | Zbl
,[14] On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20 (1975), pp. 32-43. | MR | Zbl
,[15] Un théorèm sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment longue, Math. Z., 37 (1933), pp. 698-726. | MR | Zbl
,