@article{RSMUP_2003__110__103_0, author = {Bressan, Alberto}, title = {An ill posed {Cauchy} problem for a hyperbolic system in two space dimensions}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {103--117}, publisher = {Seminario Matematico of the University of Padua}, volume = {110}, year = {2003}, mrnumber = {2033003}, zbl = {1114.35123}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2003__110__103_0/} }
TY - JOUR AU - Bressan, Alberto TI - An ill posed Cauchy problem for a hyperbolic system in two space dimensions JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2003 SP - 103 EP - 117 VL - 110 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2003__110__103_0/ LA - en ID - RSMUP_2003__110__103_0 ER -
%0 Journal Article %A Bressan, Alberto %T An ill posed Cauchy problem for a hyperbolic system in two space dimensions %J Rendiconti del Seminario Matematico della Università di Padova %D 2003 %P 103-117 %V 110 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2003__110__103_0/ %G en %F RSMUP_2003__110__103_0
Bressan, Alberto. An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rendiconti del Seminario Matematico della Università di Padova, Tome 110 (2003), pp. 103-117. http://archive.numdam.org/item/RSMUP_2003__110__103_0/
[1] Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, 2000. | MR | Zbl
,[2] Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin 1999. | MR | Zbl
,[3] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), pp. 511-517. | MR | Zbl
- ,[4] First-order quasilinear equations with several space variables, Math. USSR Sbornik, 10 (1970), pp. 217-273. | Zbl
,[5] On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws, Sbornik: Mathematics, 191 (2000), pp. 121-150. | MR | Zbl
,[6] Systems of Conservation Laws I, II, Cambridge University Press, 2000. | MR | Zbl
,