A sufficient condition for the convexity of the area of an isoptic curve of an oval
Rendiconti del Seminario Matematico della Università di Padova, Tome 110 (2003), pp. 161-169.
@article{RSMUP_2003__110__161_0,
     author = {Michalska, M.},
     title = {A sufficient condition for the convexity of the area of an isoptic curve of an oval},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {161--169},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {110},
     year = {2003},
     mrnumber = {2033006},
     zbl = {1121.52011},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2003__110__161_0/}
}
TY  - JOUR
AU  - Michalska, M.
TI  - A sufficient condition for the convexity of the area of an isoptic curve of an oval
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2003
SP  - 161
EP  - 169
VL  - 110
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2003__110__161_0/
LA  - en
ID  - RSMUP_2003__110__161_0
ER  - 
%0 Journal Article
%A Michalska, M.
%T A sufficient condition for the convexity of the area of an isoptic curve of an oval
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2003
%P 161-169
%V 110
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2003__110__161_0/
%G en
%F RSMUP_2003__110__161_0
Michalska, M. A sufficient condition for the convexity of the area of an isoptic curve of an oval. Rendiconti del Seminario Matematico della Università di Padova, Tome 110 (2003), pp. 161-169. http://archive.numdam.org/item/RSMUP_2003__110__161_0/

[1] W. Cieślak - A. Miernowski - W. Mozgawa, Isoptics of a Closed Strictly Convex Curve, Lect. Notes in Math., 1481 (1991), pp. 28-35. | MR | Zbl

[2] W. Cieślak - A. Miernowski - W. Mozgawa, Isoptics of a Closed Strictly Convex Curve II, Rend. Sem. Mat. Univ. Padova, 96 (1996), pp. 37-49. | Numdam | MR | Zbl

[3] H. Groemer, Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl

[4] M. A. Hurwitz, Sur quelques applications géométriques des séries de Fourier, Ann. Sci. Ecole Norm. Sup., 19 (1902), pp. 357-408. | JFM | Numdam | MR

[5] A. Zygmund, Trigonometric series, Cambridge Univ. Press, vol. I, II, 1968. | MR | Zbl