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Harnack’s Inequalities for Solutions
to the Mean Curvature Equation
and to the Capillarity Problem.

FEI-TSEN LIANG (¥)

ABSTRACT - We impose suitable conditions to obtain Harnack inequalities for sol-
utions to the capillarity problems in terms merely of the prescribed boundary
contact angle, the prescribed mean curvature and the dimension. Moreover,
for solutions to mean curvature e quation in a ball By (x,), Harnack’s inequali-
ties are shown to hold in B, () in terms merely of the mean curvature, 1 and
the dimension. Furthermore, Harnack’s inequalities for neighborhoods of the
boundary points will be established. We emphasize that the constant con-
cerned are all explicitly obtaned.

Let £ be a bounded domain in R", n = 2. Let H(x, u(x)) be a given
Lipschitz-continuous function in 2 X R. We consider solutions to the
mean curvature equation of surfaces of prescribed mean curvature

(0.1) div Tu = nH(x, u(x)) in Q,
where

Dy
V1+ |Du®

A solution of the capillarity problem can be looked at as a solution of the

Tu =
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equation (0.1) subject to the «contact angle» boundary condition
(0.2) Tu-v=cos0,

where v is the outward pointing unit normal of 6€22. Thus, geometrically
we are considering a function % on 2 whose graph has the prescribed
mean curvature H and which meets the boundary cylinder in the pre-
scribe d angle 6.

One main purpose of this paper is to obtain Harnack’s inequalities for
solutions to the capillarity problems in terms merely of the dimension n,
the boundary contact angle 60 and the mean curvature H. These results
are formulated as Theorems 2-3. Moreover, for solutions to the mean
curvature equation (0.1) in a b all Bp(x), Harnack’s inequalities are
shown to hold in B,;(x), 0 <A <1, in terms merely of the mean curva-
ture H, 2 and n. This is formualted as Theorem 4. Furthermore, Har-
nack’s inequalities for neighborhoods of the boundary points will be es-
tablished and formulated as Theorems 5-6.

We recall a Harnack’s inequality due to Serrin[25] which can be stat-
ed as follows:

«Suppose u(x) e C*(R) is a non-negative solution of (0.1) in a two-
dimensional ball Bgr(xy) for H=1 and suppose that u(x,) =m. Then
there exist functions o(m) >0 and D(m; r) < © in r < o(m), such that
|u(x) | < P(m; |x|) tn Bgr(xy). There holds li_r)n D(m; r) = o, while
o(m) N0 as |m|—o.» e

In Finn [3], a simpler proof of this result is given by employing the
notion of generalized solutions, together with either constructing barri-
ers to apply comparison principles or showing gradient estimates of a
special type. This new pr oof yields considerably improved and qualitat-
ively different information. Indeed, the following is obtained in [3], in
which it is remarkable that the one sided bound essential for the classi-
cal Harnack’s inequality does not appear:

«There exist a universal constant Ry and a constant R determined en-
tirely by R for R > R, such that in Serrin’s result o(m) = R if R>R,.
Furthermore, there exist functions Ay (R; v) and Aq" (R; r) such that if
ueC*(R) is a solution to (0.1) in Br(x,) with w(x,) =m, then

Ay (R; o)) <u(x)—m—1+V1-r><Ay (R; |x]),
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where IleirrllAO* R; 7 =1!EirnlA0+ (R; r)=0, forall r<1and A" (R; 1)< =,

for all 0 <e<R.
If R>R,, m >0, then o(m) = . Furthermore, a function A,(R)
exists such that A;(R) N0 as R—1 and

u—m-1+V1-r2<A;(R). »

In case n = 2 and H satisfies monotonicity condition instead of being
constant, Finn and Lu [6] obtained gradient estimates of a type analog-
ous to that employed in [3], which immediately yields the following, in
which the one sided bound does not appear either.

«Assume H'(u) =0, H(— o) # H(+ o). Then there exist a positive
constant o * (uy; R) < R and a continuous function A (uy; R; 0) with
A (ug; R; 0) =uy such that if w(x) satisfies (0.1) in two -dimensional
ball Br(xy) and w(xy) = uy, then u <A throughout B+ ().

There also exist a positive function o~ (uy; R) <R and a continu-
ous function A, (uy; R; 0) with A, (uy; B; 0) =uy such that u=A,
throughout B,-(xy).

If H+ )=+ o and H(— ®) = — o, then the functions Ay — uy
and uy— Ay do not depend on uy, and additionally 0™ =0~ = R.»

Indeed, the gradient estimates resorted to in [3] and [6] take the fol-
lowing form and is proved in [5], [15] and [6], respectively.

«Let R > Ry=0.5654062332.... Let QrcR? be a “moon” domain
bounded by two circular arcs I'y and Iy of the respective radius R and

% such that 2| Qg | = |I'1| — |I'z|, where |-| denotes either the Haus-

dorff 2-measure or 1-measure. Let R(R) be the radius of the largest disk
concentric to Bgp(xy) such that Bg(xy)Cc2p. There exists a positive
Sfunction A(R; ) < o such that for any solution u(x) of (0.1) in Bg(xy)
and any &<0, there holds |Vu(x)| <A(R;e) in Bg_.(x)). Further-
more, the value R cannot be improved. »

«Assume H'(u) =0, H(— o) # H(+ ). Let w(x) be a solution of
(0.1) over a two-dimensional disk Bgr(x,). Then |Vu(x,)| is bounded,
depending only on R and on u(xy). If H(— o) = — € © and H(+ ©) =
= + o, then the bound depends only on R.»

The remarkable feature of this type of gradient estimate is that it de-
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pends on neither boundary data nor bounds of any sorts, in contrast to
results in [1] [7] [8] [9] [14] [17] [26] [27], for example. Progress aimed at
obtaining gradient estimates of this type are made in [16] [17] [18].

The above-mentioned Harnack’s inequalities and gradient estimates,
however, has the disadvantage that, while it guarantees the existence of
upper or lower bounds, the explicit value of the bounds are not known. In
this paper, Harnack’s inequalities are s hown to hold under some im-
posed condition, in particular, under the one-sided bounded condition;
however, the constant concerned are all explicitly obtained.

In [28], Harnack,s inequalities are obtained for nonnegative bounded
solutions u e W2 () of (0.1) in which H(x, ) satisfies structure condi-
tions of different feature than those required in this paper (cf. (0.12) be-
low). The Harnack’s inequalities in [28] takes the form supu <C 1nfu for

any ball Bpc Q and 0 < 0 <1, in which the constant C can be exp11c1tly
calculated in terms of n, o, R, the upper bound of % in By and the quanti-
ties involved in the structure conditions.

0. Introduction.

0.1. Preliminary Harnack’s inequalities.

Of basic importance is the following Preliminary Harnack’s Inequali-
ty, which estimate the growth of a solution in a small ball B in terms of
the ratio of the measure of level sets inside this ball B t o the whole ball
B. Namely,

PrOPOSITION 1 (the Preliminary Harnack’s Inequality). Let u be a
C2(R) function over a domain QcR", with subgraph

U={(x,t)eQ2 xR, t<u(x)}.
For points z = (&, HeQ xR and for ¥>0, we set
U®@=CEnNU, ad U R=CRU,
with
C.@) ={(x,t): |x—Z|<r, |t—t|<r}.

Suppose there exist positive constants a ., and R* depending only on n,
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1nf H and sup H such that
QxR

(0.3) |U,@) | = ar" ! for all »<min(R*, dist(Z, (2 X R))),

if |U.2)| >0 for all r>0,
and
04) |U@|zaur"t for all »<min(R*, dist(Z, (R x R)))

if |U @) >0 for all r>0,
Let us set, for >0,

— 3
Dy={x:xeQ, |Du| =p}, R*=maX(R—2R*,ZR)7

and

R* 1
A* =A% s=min(1 max — .
2.8 (1, B) (R 8)

If the ball Bg(xy) has the radius R < min (E*, dist (xy, 09Q)), then there
exist two positive constants &, ., and C,, 5 determined completely by
s, B and n such that, for any x; € Bp«(xy) with By «p(x) C Dy, we
have

0.5)  w(xy) —mo, <&, ,,0,u@)—mgy,)+
+(2 +A;ki’,/i§n,a*) wnR + ‘Sn,a*ca*,ﬂR17n f |D%|d9€,
Bp ()
and
0.6) Mg, —ulxy) <&, 4,0, (Mg, —ulx,)) +
T2+ AR pEn ) 0uR+ 80, Co yR" [ | Dulda,
Bp(xo)
where we set Mg, = supu and mo, = mfu for any domain 2, such that

Br(xy)cQ,cQ. In fact we are allowed to take

2n+2

(07) En, ax = ’

A %
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and

1
271,-%—1—1 w y

0.8) Cov s =2 M;*;,ﬂ(—)".

a

In Theorem 1 and throughout this paper, we denote by | . | either the
Hausdorff (n + 1)-measure or the Hausdorff n-measure and denote by
B.(x), s>0, xe, a ball centered at x and of radius s.

In Section 1, this Preliminary Harnack’s Inequality will be proved by
adapting the reasoning on pages 312-313 of Giusti [12], together with an
application of the following modified version of Poincaré inequality.

ProposITION 2 (a modified version of Poincare inequality). Suppose
we WhP(Q) for some p=1 and convex 2, with

[{r:xeQ,w)<0}|=a,|2]
If p>1, then we have
leell, < Ce., [Dl,
with

p-1 w 1_%
C,=(1-(1-a Tl(—") diam Q).
== D)) 2] ( )
If p=1 and if we have, 1n addition,

[{r:xeQ, wx) <0} =a,|2],

then
llwll < Cay, o, D,
with
1 1 1
1\'"7 [ 1\'% L\
(0.9 Cal,a2=max(a1,a2)((—) +(_) )( Wy, ) (diam 9)".
aq (0%} |Q|

A proof of this inequality is given in [18]. We remark that inequalities
of this type are indicaded to hold, for example, in [20] and [29] for a class
of domains with much less restrictions than that of convexity imposed
here. However, in results of [20] and [29], the constants C,, and C,, ,
are not given explicitly.
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For sufficiently small », the number «a .. in Proposition 1 can be esti-
mated in terms of the mean curvature H and ». In Appendix, we will re-
sort to the estimates obtained in Giusti [12] for generalized solutions of
the equation (0.1), taking ad vantage of the fact that generalized sol-
utions for the equation (0.1) are allowed to take infinite values + oo
and/or — o in subdomains of Q of positive n-Hausdorff measure. We
shall obtain

PRrROPOSOTION 3 (estimates for the number « ., in (0.3) and (0.4)). Let
u be a generalized solution to (0.1) in Q with the subgraph U. Let U, (Z),
U/ @) be as in Theorem 1. If

|U,&) | >0 and |U/®@|>0 forall r>0,
then, setting

1

(0.10) Qyp=—""79H—0——,
* 4(n+1)k(ﬂ+1)

with kg, being the isoperimetric constant in R™, m=1, and set-
ting

1

( 1 n
- , if inf H(x,t) <0,
R* =1\ 2kwo.,| inf H(x, 1) 2xR
e if 91r;%H(m, t)=0,
. 1 1
p n, if sup H(x, t) <0,
011) Rx =] | Zkw@n|sw H, B)] 2xk
o if inf H(x, t) >0,
\ 2 XR
we have

|U.GR) | Zaur"™t for all r<min(R*, distZ, a(2 x R)))
and
|U @) | = axr"tt for all r<min(R¥, dist(z, (R X R))).

Inserting the value of the number a. in (0.10) into Proposition 1, we
obtain
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THEOREM 1 (the Preliminary Harnack’s Inequality*). Let ue
e C%(Q) be a solution of (0.1) in Q. Let By (xy), B+ (), A% gand Dgbe as
wn Theorem 1. If x,C Bg«(y) with By ,+g(xy) C Dg, then (0.7) and (0.8)
hold with a . in (0.10), R* =min(R*, R¥) and

Sn,a* = 2n+4(” + 1) k(71+1)'

0.2. Harnack’s inequalities for solutions to the capillarity problem.

Assume that u e C2(2) N C%1(Q) is a solution to the capillarity prob-
lem (0.1) and (0.2). Furthermore, suppose that 3R is of class C? and that
the functions

HeCO%'(QxR) and cosOeC®1(0Q)
satisfy the conditions

0.12) |cos6| <7, and inf H>0,

for some positive constant y, 0 <y <1.

First of all, let us extend cos @ and v into the whole domain 2 such
that cos 6 belonging to C%1(Q) still satisfies (0.12) and such that the vec-
tor field v is unifomly Lipschitz continuous in £ and bounded in absolute
value by the number 1. The extensions are possible in view of the
smoothness of 9Q.

An integration of (0.1) and (0.2) yields

(0.13) jTu-DndijHndx— jcosendmfn_1=o,
Q Q EYe)
for all 7 € C1(Q). Henceforth, we may say that u e C1(Q) N Wh1(Q) is a
solution of (0.1) and (0.2) in the weak sense in Q if it satisfies (0.1) in
and (0.13) for all ne C1(Q).
To handle the third term on the left hand side of (0.13), we recall the
following result in Lemma 1.1 of Giusti [12] and its proof.

LEMMA 1 (Giusti [12]). Let 02 be of class C* and
d(x) = dist (x, 9Q),

forxe Q. For e > 0 which is so small that the function d(x) is of class C*
m

(0.14) Y. ={xeQ:dist(x, 0Q) <¢},
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there exists a constant C, o determined completely by ¢ and 32 such
that

(0.15) [ wldsc, < [ |Dw| +C, o [ |w]da,
8Q 3, e

for every we BV(Q). In fact, if we let n, be a C” function with

0=sgy,=1,
(0.16) n.=1 on 99,
n:=0 in Q\%,,
then we con take
0.17) C..o=sup|div(y.Dd)|.
Q

Indeed, the following results are well known (cf. e.g. pages 354-357 of
[10], pages 420-422 of [24]).

LEMMA 2. Let 3Q be of class C* whose principal curvatures are
bounded in absolute value by Rso. Then d(x) = dist (x, 02) is of class

C%*in X, for e <

JvaQ
Furthermore, for points € in X,, ¢ < % define y = y(x) to be the

, where X, is given 1 (0.13).

q

(unique) points on 92 mearest to 7. Congfdw the special coordinate
frame in which the x,-axis is oriented along the inward normal to 02
at y and the coordinates xy, ..., ¢, _1 lie along the principal directions
of 9Q at the point y. In this special coordinates, we have at x

(0.18) Dd=(0,...,0,1)
and
k k,_
(0.19) D2d = diagonal L, —2= o],
1-k,d 1-k,_.d
where ki, ..., k,_, are the principal curvatures of 92 at .

Inserting (0.18) and (0.19) into (0.17), we obtain the following

LEMMA 3. Let 3R be of class C* whose principal curvatures are

bounded in absolute value by Rso. Then, for ¢ < and for each 6,

QR
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0<0<1, we can take in (0.13)

(0.20) Ce,Qs |D77$| +2(7’L_ 1) 3{39
1+6
&
Combining (0.12) and (0.15) with C, , being as in (0.20), we obtain, for
e ! ,
2 Rao

(0.21) ‘ Jcos OndoC,_,
o)

syf Dy +ycsygj || de <
s, s,

- (140
<y |D17|+y(—+2(n—1)3(ag)J|7]|dx,
e
& ZS

z

for all neC'(Q).

In Section 2.1, we shall obtain Harnack’s inequality in the following
formulation by inserting (0.21) into (0.13) either with » = (u —mg,) or
with # = (M, — u), and subsequently inserting what results in into (0.5)
and (0.6).

THEOREM 2 (the first Harnack’s inequality). Let ueC?(2)N
NWHL(Q) be a solution to (0.1) and (0.2) in the weak sense in Q. Suppose
that 3Q e C? such that (0.12) holds in which y satisfies

1,
0.22) 2y < ———
‘—‘){99
Let us set
o, |2
a,=02+¢, a*A* —R + n a*Ca Ty N\ pn-1
1 ( g R R,ﬁ)l_y g , *’ﬂ(l_y)Rnfl
and
_ \ el
A, = (2 + &n,a*AR,ﬁ) o, R+ E”"‘*C’l*vﬁ R"1 ’

Then, for any x, € Bg«(xy) with By« (%) C Dg, R* and A* being given
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i Proposition 1), we have

(0.23) w(y) — mg, < 5”1 "*y (uay) —mg,) + 4.
and

gﬂ C(*
(0.24) MQO - u(%o) 1— (M_QO u(xl)) + a17

where we set mo, = mf wand Mg, = supu for any domain 2, such that
Bp(xy)cQ,c. Fm’thew'more for cmy %1 € Bpy () with By 4+ (1) C Dg,
RO —max( —2R*, R), we have
(0.25) wxy) —meo, <&, 4,0, (u(x) —mg )+ A,
(0.26) MQO—ZL(OCO)$§nya*wn(MQO—u(901))+a2,
and  for  any 901, ¥y € Bps(wg)  with By ,«p(y) CDg, R =
= max( " —2R*) —GR), we have
027 wxy) —mgo, <&, 4,0, (Ux) —mg,) +

+(2 + g,n’a*/l;kg’ﬂ)  y, diSt(.%'l, 9(72) + E,,L,a*Ca*yﬁa)n dist(xl, 902),
028) Mo, —uw(xy) <&, ,,0,Mqg,—ulxy)) +

+(2 + gn,a*/l;ki’,ﬂ) w diSt(xly 902) + gn,a*ca*,ﬁwndiSt (901, 902).

In the special case where Q is the ball Br(x;), we have

1 1
(0.29) kk=—, 1=1,...,n—1, and Xz;o=—,
R TR

and from (0.12) we obtain immediately
(0.30) J' cosOndIC, 1| <ynw,R" 'sup|y|.
3Bp (x9) Br

In Sections 2.2 and 2.3, the inequality (0.30) is inserted into (0.5) and
(0.6) to obtain the following.

COROLLARY 1 (the second Harnack’s inequality). Let ueC?*(Q2)N
NWHHR) be a solution to (0.1) and (0.2) in the weak sense in Br(xy).
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Suppose that (0.12) holds in which y satisfies
(0.22%) 2y <R inf H.

x € Br(xg)
Then, for any x, € Bg«(xg) with By ,+«g(x;) CDg, if we set

Mp= supu and mp= inf u,
Bp(ap) B(ay)

then there hold either

(0.31) uwy) —Mmp < &y o, @, (u(y) —mp) + Az g
or

(0.32) Mp—w(xy) <&, 0, @ (Mg —u()) + Az, gy
where

(0.33) Qo p=Q+&, .. A%p) 0, R+E, ,.Cy s, R.

COROLLARY 2 (the third Harnack’s inequality). Let ueC?*(Q)N
NWHLR) be a solution to (0.1) and (0.2) in the weak sense in Bg(x).

Suppose that (0.12) holds. Furthermore, suppose that yR" 1 is so small

that, for some 0 <71 < %,

T
gn,a*ca*,/}

Then, for any ;€ Bp«(xy) with By,«g(1) CDg, there holds either

(0.34) nw,yR" 1<

1 1
(0.35) w(xy) — mp < mfn,a*wn(u(%)—mg)"‘ (1_—21)&2,12,

or

1 1
(0.36) Mp —u(xy) < mgn,a*wn(MR_%(%))‘f' maa,m

where My, mp are given i1 Theovem 2 and Qs g s given in (0.33).

We note that the mean curvature H is not involved in the condition
(0.34).
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0.3. Harnack’s inequalities for solutions to the mean curvature equation.

For solutions to the mean curvature equation (0.1) in By (x,), we shall
establish in Section 3 Harnack’s inequalities in B;z(xy) in the following
formulation in which the constants are completely determined by 1, H
and n. We emphasize that no boundary condition is involved in these
Harnack’s inequalities.

THEOREM 3 (the fourth Harnack’s inequality). Let ueC*(Q) be
a solution to (0.1) in Bg(xy). Suppose that ( inf H)=0. For any A,

x e Bp(w)
0 <i<1, and for any point x, € Brs(x)), R;* = max (AR —2R7, #)’

with By 4+ (21) C Dy, we have, either
(037) u(x(]) — Mg = gn,a*(l + ZCA C/l* Ce,.an)(u(xl) - mR) + a2,39

or

038 Mp —w(xy) <&,,4,(1 +2C,CFC, g, )(Mp — u(x;)) + As, g,
where we set

1-2"
(0.39) C,=A""14"24+ .  +A+1= —

and

ln
040) CyF=1-( inf H)R(L)u—/l)(u —) —
@ e Br(x)) n+1 C,
n+1
—n( inf H)R
:UEBR(OL'()) Ci

If there holds, for some 7, 0 <1< %,

(041) C/I C,l*a)nR7“1 < t

'n,,a*Cs,Q

then we have either

1 1
(0.42) u(xy) —mp < mgn,a*(u(%) —mg) + m A, gy
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or

1 1
(0.43) Mp — ulxwy) < mgn,a*(MR —u(x,)) + m Az, k-

0.4. Boundary Harnack’s inequality.

Appealing to the following results in [12], Harnack’s inequalities for
neighborhoods of boundary points can be established by the reasoning in
Section 2 and Section 3.1 without essential change. Thus, we formulate
the first four Harnack’s inequalities w ithout giving a proof. In Section
3.2, we shall briefly indicate the reasoning leading to the fourth bound-
ary Harnack’s inequality. A proof of Proposition 4 will be given in
Appendix.

PROPOSITION 4. Let u be a function in C*(Q)NW'1(Q) in a do-
main Q c R" with the subgraph U. Let U,.(2), U, () be as in Theorem 1.
Suppose the first inequality in (0.12) holds and suppose that 382 is of ¢
lass C* with C, o given in (0.17). If

|U,® >0 and |U/®@|>0 foral r>0,

then there exist positive constants R**, R¥* and a 4. determined com-
pletely by n, inf H, sup H, ¥ and C, o such that

QxR QXR !

|U.R) | > awr"™t  for every r<R**
and

|U!R)| > awsr"tt  for every r<R¥*.

In particular, we can take

1-y

0.44 e —
049 1600+ 1) )

G;

) if inf H(x,t) =0,
Ce, okm+1) QxR

(0.45) R**=
C;

1 1’
Ce,Qk(7z+l)(2w7z) fnt1)

min R**|, if inf H(x,t)<0,
QxR
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and
——— i sup H(w, ) <0
] if su x,t) <0,
o CS,Qk(nJrl) QXII){
(0.46) R¥*= o
min ’ JREr |, if sup Hx, t) >0,
( Cs,Q(k(n+1>)(2wn)1/<"“) " ! err[;

n which we set

y+1
with
Rf* _ 1 _ 5/‘ n+1’
4n(k(n+l)) Wy | Qll;(lfRHl
Ri* _ 1 _ ’,J; 77/-%—17
4ﬂ(k(n+1)) Wy, | sup Hl
QxR
and

y P

g 1= 7=2nlk )] dnf Hlo, (B
C5; = min ’

3y+1

1-7 =20k, ;1)) | sup H|w,, (R**)"
N |1 QxR
C;" = min 3

3y +1

THEOREM 4 (the preliminary boundary Harnack’s inequality). Let
ueC?(Q)NWLLQ) be a solution to (0.1) and (0.2) in the weak sense in .

Let us set a4, as in (0.44), R** = min (R**, R¥*), with R** and
R¥* given as in (0.45) and (0.46) and set

R :max(R—zR**, %R),
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and

sk 1
AE* —A**:min(l,ﬂ)max(R ,—).
R 8

If the ball has the radius R < R**, then there exist two positive con-
stants &, ., and C, . s determined completely by a .., B,y and n such
that, for any x; € Brs«(y) N 2 with By xp(2) N Q2 C Dy, we have

W) — Mo, S &y g, @, (X)) — Mg, ) +
+(2 + Ca**,ﬂgn,a**)wnR + En,a**ca**,ﬂRn71 J |Du|d90 )
Q9
and
Mo, —wxy) <&, o, 0, (Mg, —uly)) +
F@2+ Coa pEn )R+ Epa, Can g B [ | Dl dr,
Q9
where we set Mg, = sup u and meo, = 1nf u, for any subset 2, of Q with

(Bp(xp) N Q) c QyC Q In fact, we are allowed to take

on +2

gvz,a** = ’

A ey

and

1

7Z+1+— a)n 7
Ca**,ﬁ—z n a**( .
A ey

THEOREM 5 (the first boundary Harnack’s inequality). Let ue
e C2(Q) N WL L(Q) be a solution to (0.1) and (0.2) in the weak sense in Q.
Suppose 32 € C? whose principal curvatures are bounded in absolute
value by Rso. For xyedQ, suppose that the first inequality in
(0.12) holds for some number vy, 0 <y <1, m 902 N Br(xy) and
(%(ngfo'mmH ) =0. Suppose that (0.22) holds. Suppose further that

(0.47) Tu'VR < O,

throughout 9Bs 4+« p(x1) N Q2 N Q, where v i is the outward unit normal
with respect to By 5 () N Q2N Q. Let us set A, and Ay as in Theorem 2.
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Then, for any x; € Bps(xg) N Q2 with By 4+ (x1) N 2C Dy, we have

gn,a**wn
u(xo) — m_QO < ?(u(ﬁﬁl) — on) + (511,

and

’sn,a**wn
MQO - u(xo) < ]._—A(MQO - u(wl)) + al,
for any subset Q, of Q with (Br(xy) N Q)¢ Qyc Q. Furthermore, for

3

any x; € Brg(x,) N Q, Ri* = max(g — 2R, gR), With By e p (1) N

N QcDg, we have
M(%‘O) - m.QO = ‘Sn,a**wn(u(xl) - m.QO) + a27

Mg, —w(xyg) <& o, 0, (Mg, — uliy)) + Ay,

and for any xy, ¥, € B () N L, Ei"* = max(§ —2R**, %R), with
By g g (1) N 2C Dy, we have
’LL(.’)Cl) - Mg, S gn,a**wn(u(xZ) - on) +

(1 + gn,a**/l**) wndiSt(xlr 902) + En,a** Ca**,[iwndiSt(xlr 96'2),

MQO - 'I/L(.’)Cl) s gn,a**wn(M.Q(, - “(902)) +

+(1+&, 0, A0, dist (@), 25) + &, 4, Cu e, p@ o dist (2y, 23).

COROLLARY 3 (the second boundary Harnack’s inequality). Let ue
eC2(Q)NWE Q) be a solution to (0.1) and (0.2) in Br(x,). For xye
€ OBy (1), suppose that the first inequality in (0.12) holds in dBg(x) N
N Br(xy) and ( inf H) = 0. Suppose that (0.22) holds. Suppose

x € (Bg(x9) N Bg(xp))
Sfurther that (0.47) holds along IBg(xy) N Bi(xy). Then, for any x, e
€ B+-(29) N Bg(xg) with By« g(1) N Br(xy) c Dy, if we set

Mp = sup % and mp= inf  w,
Br(x9) N B () Bp(x9) N Bg (%)

then there hold either

/M/(.')C(]) - mR S gn,a**wn(u(xl) - mR) + aZ,R
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My — w(xy) S En,a**wn(MR — () + Qg g
where Ay g ts given n (0.33).

COROLLARY 4 (the third boundary Harnack’s inequality). Let ue
eC2(QQ)NWLL(Q) be a solution to (0.1) and (0.2) in the weak sense in
Bp (). For xye dBg(xy), suppose that the first inequality in (0.12) holds
m OB (xy) N By (ay) and ( inf H) = 0. Suppose (0.34) holds for

1 x e (Bp(xg) N Br(xg))
some 7, 0 <T< 3"

(1) Suppose further that (0.47) holds along 9Bg(xy) N Bi(xy). Then,
Jor any x, € B (xg) N Bg(xy) with By 4+« g (1) N B (xy) € Dy, there holds
either

~ 1 ~
w(xy) — mp < mgn,a**wn(u(xl) —mpg) + m As, g,

— 1 —~ 1
Mp—w(ey) € ——& . 0, 0 Mp — u(xy)) + ——— Ay .
r — u(y) (1—27)5’ , (Mg — u(x)) 120 J2r

(2) If (0.47) fails to hold throughout OB, ,«g(x1) N L2, but if

nw,yR" '+ nw,R" 1<

’

&n,a*Ca*,[i

1
for some 7, 0 <1< > then we have

1 1
u(iey) —Mmp < —————&, 4. 0, (uw(x,) —mp) + ——— Ay g,
0 R (1—21)5’ 1 R 1-20) 2, R

and

1

— 1 —
Mp— s —-6, s P n Mp - + a
r— u(xp) & e @ (Mp — u(2y)) T 20

(1-27)

2,R-

THEOREM 6 (the fourth boundary Harnack’s inequality). Let ue
e C%(Q) be a solution to (0.1) in Bp(xy). For x,e dBp(x,), suppose that
inf H)=0. For any A, 0 <iA<1, and for any point x, e

w e (BR(xo) N Br(x))
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€ Bpp(ity) N By (iy), R = max (lR —2R**, MTR) with Byyep () N

N By (y) c Dy, we have, either
(048) u(%) - 771/3 s gn,a*(l + ZC/I Cs, an)(%(ﬁﬁl) - %R) + aZ,R’

or

0.49) Mp—u(wy) <&, 0,(1+2C,C, g, )Mp— u(2y)) + Ay, g

If there holds, for some 7, t< l,

2
o T
(0.50) Ciw,R" < ,
n,a*Cs,Q
then we have either
(0.51) u(xy) —m <;§ (u(m)—ﬁb)+;dz
. 0 R = (1—2‘[) Ny s 1 R (1—2‘[) R
or
0.52) M —u(m)<;§ M —u(%))ﬂL;a
ST A S T T (g

1. Proof of the preliminary Harnack’s inequality.

In this section, we shall prove the Preliminary Harnack’s Inequality
(Proposition 1), adapting the reasoning on pages 312-313 of Giusti [12],
together with an application of Proposition 2. The reasoning suggested
by Giusti [12] enables us to estimate the 1 eft hand side of (0.5) and (0.6)
in terms of the L -norm of % and a subsequent application of Proposition
2 yields this estimate in terms of the L'-norm of |Du|.

1.1. Suppose that u e C*(R) satisfies (0.3) and (0.4). For any domain
Q, such that Bp(x))c2,cQ, let us set

Mg, =supu, and mg, = infu .
Qo Q9

Let

z; = (g, mo, + 2JR),
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for j e N. Then
z;ieU,
for

u(®y) — Mg, ]

<
le[ oR

where [s] denotes the largest integer less than s for s > 0. From (0.3), we
have

R n+1
|UR/2(Zj)|2a*(E) ,

for 1 <j<j; and therefore

J1
. R n+1
J(u—mgo)deZl|UR/2(zj)|lea*(E) )
7~

Bpr(x)
Hence

Mg, =u(xy) + (Mg, — uli,))
S2(j1+ DR +mg,+ (Mg, — u(xy))

2n+2
< J(u—mgo)dac+2R+m90+(Mgo—u(aco));
a.R
Bpr ()
that is,
n + 2
(1.1) u(ey) = mg, < — f(u—mgo)dmzze.
@ Bpr ()

To estimate the integral on the right hand side of (1.1) under the hy-
potheses that a; € Bp«(wy) and By 4« (2;) C Dy, let ¥ € 3B; 4+(;) be a
point at which

w(@y) —u(ey) =24% s Rp .
Let

2y = (g, w(x,))
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and
z1 = (&1, w(@y)).
From (0.3) and (0.4), we have

| Uiy (1) | = a*(A;kE,/jR)n+la

and
| Uy ,z@1) | = as(Ah ;R
These yield
{w:we Brl), w@) Sulw) + A% pRY = au(Af 4R,
and

{x v eBr(xy), u(x) = u(e;) + A% R} Z a, (Af zR)".
Hence, by Proposition 2, we have

1.2) J (u—mg,) de <
Bp(x)

<C,, ;R j |Du|dz + ((u(@,) —mg,) + A% 5 R) | Bp(@) |,

Bp(xo)

ax (A% )"

with C,, 4 being as in (0.8) by setting a;=a,= in (0.9).

Inserting this into (1.1), we obtain (0.5) with the Vah;e &, a, given in
0.7).

1.2. Analogously, we let
4" = (a, Mg, — 2R)),
for je N. Then
ztelU =Q\U
for

Ly [MQO_M(WO)]
2R )
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We obtain from (0.4) that
R n+1
|U1%/2('?i+)|>a*(g) ,

and therefore

i ) R\n+1
f (Mgo—u)dacB21|Ué/2(zj+)|2j1+a*(g) ,
)=

Bpr(x)
which yields

—mg, =u(x) + (u(xy) —mg,)

< —Mg, +2(ji" +1) R + (u(ig) — myg,)

272+2
— 7~ J(Mgo—u)dx+2R—MQO+(u(xo)—mgo).
* Bpr(x)
That is,
n + 2
1.4) Mg, —ulxy) < J (Mg,—u)dr+2R.
a*Rﬂ/B( )
R (%o

Under the hypotheses that x; € Bg«(1y) and By 4+ (2;) c Dp, let x;" €
€ 9B; 4+p(2;) be a point at which

w(ay) —u@ ) =24% 4 Rp,
where the point x; e Bz-(xy) is chosen as in 1.1. Then setting
2= (o, u@)),
we obtain from (0.3) and (0.4) that
| Uayp, r(21) | = a4 (A% R
and

| Uy 2G| 2 as(Af gR) T,
B
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which and Proposition 2 yield

| Mo, —wydes<cC,, 4R [ |Dujde+

Bp(xg) Br(xp)
+((Mg, — u(xy)) + A% 4 R) | Br(xy) | -
This and (1.4) yield (0.6).

2. Proof of Harnack’s inequalities for solutions to the capillarity
problem.

2.1. Proof of theorem 2.

Setting ¢, = ﬁ, we obtain from (0.21) that

jcosendm,l s?j |Dy|dac + 25 Koo (n + O) j || dac ,
>

EJe} €0 2o

for each 6, 0 <6 <1 and for each € C'(Q). By this and (0.13), if u is a
solution in (0.1) and (0.2) in the weak sense, we obtain

D
| Du] -Dndxs?J | Dy die +

2.1) _—
Qf V1+|Du|2 S

+2ny Rag J’ |n|da —nf[—]ndac,
= Q

for each neC'(Q). Taking 7 =u —mg, =0, we obtain from
D 1
P\ A D - — L s Du| -1
V1+ |Dul|? V1+ |Dul|?
and (2.1) that
@2 [ |Dulde+(1-7) [ |Dulde<

o\, 2o

<|2| +2ny Ksq J'(u—mgo)dm—njH(u—mgo)dm.

) Q

£0
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Taking 7= Mg, — u in (2.1) instead, we obtain

@3 [ |Dulde+(1-7) [ |Dulde<

‘Q\ZLO Z‘VS(I

<|Q| +2n7%sq [ (Mg, —w) du—n [ H(Mg, ) dx .

o Q

In case (0.22) holds, we obtain from (2.2) and (2.3) that

2.4) [ |Dujde<|2].
Q\Zso
and
1
2.5) f|Du|dm<—A|Q|.
Q 1_‘)/

Inserting (2.5) into (0.5) and (0.6), we obtain respectively (0.23) and
(0.24). By using (2.4) instead of (2.5) and replacing R by E/2 in (0.5) and
(0.6), we obtain (0.25), (0.26), (0.27) and (0.28).

2.2. Proof of corollary 1.

Suppose that « is a solution to (0.1) and (0.2) in the weak sense in
By (x,) and that (0.22*) holds . We insert the inequality (0.30) into (0.13)
and take n=u—mp and n=Mzr—u in (0.12) to obtain, respecti
vely

@6) [ |Du|de< |BgGu)| +

Bp (o)

00, FR" " (Mg —mp) —n [ Hu—mpg) de,
BR(.%‘())
and

@D [ |Du|de< |BgGu)| +

Bp(xo)

+nw, JR" " H(Mp —mgp) —n j HMy —u) dz .
Br(xg)
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Since Mz — mp = (Mg — u(xy)) + (u(xy) — mp), we have either

1 .
H('M/—mR)d%B E( inf )H)(MR—mR)|BR(900)|,
0

x e Bpr(x
Bp(xg)

1
| B = w dwz S int B = ) [Beo)|
xrebr(Xy

Bp(xg)

Inserting these and (0.22%) into (2.6) and (2.7) yields estimates of

I | Du|dx, which we subsequently insert into either (0.5) or (0.6) to
Bp(x)

establish Corollary 1.

2.3. Proof of corollary 2.

Suppose that » is a solution to (0.1) and (0.2) in the weak sense in
By (x,) and that (0.34) holds. We obtain from (2.6), (0.12) and (0.34)

tMp—m
| Duld < | By(ay) | + —m— ")
&n,a*ca*,ﬁ

Br(xy)
Inserting this into (0.5) and (0.6), we obtain respectively

28 w@wy) —mp < TMp —mp) + &y 0, 0, (W) —mp) + s g

and

2.9) Mg —wwy) StMp —mp) + & 0,0, (Mg —u(@,)) + Az, g,
where (; g is given in (0.33). If w(xy) — mp < Mp — u(x,), we have Mp —
—mp < 2(u(xy) — mg), which and (2.8) yield (0.35). If Mp—u(xy) <

< u(xy) — mp, then we have Mp — mp < 2(Mp — u(x,)), which and (2.9)
yield (0.36).
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3. Proof of Harnack’s inequality for solutions to the mean curva-
ture equation and proof of a boundary Harnack’s inequality.

Choose 7, =1,(0) € C'(Bg(wx,)), o = dist (w,, a;), with

3.1) n,=1 in Bg(xy),
7,=0  on 9Bg(x),

for some A, 0 <1 <1, such that

1+6,

2 - 9
3.2) 1-OR’

————— < |Dy,(0)]| <
Y |Dn;(0) |

for some dy, 0 <d,<1 and for AR <p <R. Thus

146
Sm(@)ﬁl—ﬂ,

%
3.3 1-—=
(3.3) z 7

for Al<so<R.
Suppsose that ueC?(R) is a solution to (0.1) in Q. Taking # =
=n,(u—mp) and n =n,(Mgr —u) in (0.12), we obtain

D
J’ [ D] ‘Dndx +n j Hpydx=0,

2
Bary V17T |Dul Brro)

which yields

2
3.4) j | Du] <

- dx
Bty V1T |D“|2

S f |Dn ;| (w —mg) de —n f Hy,(u —mpg) de =
Bg(x0) \B;r(20) Bp(w)

= f |Dn ;| (w —mpg) de —n j Hy,(u —mg) de —
Bp(x0)\B;r (x0) Bp(x0)\B;r (20)

—-n J H(u—myp) de

Bjp(xy)
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and

2
3.5) J _1Pu <

Bip(zg) VY I+ |Du|2

< f Dy, | (Mg — ) dz — f Hn (Mg — ) do =

Bpr(w9)\Br(xo) Bjr()

_ J 1Dy, |(Mp — ) d — n f Hy ,(Mp — ) das —
Br (0)\B;r (x0) Br(20)\B;r (o)
-0 J H(Mp—u)dx .

Bjr(xg)

By (3.1) and (3.2), we have

1+6
J' |D7]/1|(MR—WLR)denwn(MR—mR)(—O) J'anldgz
(1-)R o

Br(x0)\Bjr (%)

(1+<§

— )(l—l)(MR mg) 0, R"1.

Since 0, can be arbitrarily small, we have

n

(3.6) f |Dm|(MR—mR)dxs( 1__

Bp(x0)\B;r (20)

)(MR—WLR) wan*I.

3.1. Proof of theorem 3.

We also have

n f H??A(MR_mR)d.')CB

Bg(x0) \B;r (20)

xeBpg(x)
AR

R
=n*( inf H)ow,Mg-— mze)[ J(I—%)indel

1_112 l_l?’b‘f’l
n - n+1

=n?( inf H)(Mp-— mR)( )wnR”.

x e Bg(xp)
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Since 0, can be arbitrarily small, we obtain

(37) n f H?]A(MR_’WLR) dx =
Bp(x0)\B;r (o)
_ /'Ln 1-— ;{n+1

1
=n2( inf H)(MR mg) - w,R" 1.
weBp(w) n n+1

Moreover, we have

38 n J HWMp —mg) de = n( 1nf H)(MR mr) A" w, R".

reB R ”co
Bjr ()

From (3.6), (3.7),(3.8) and (0.39), we obtain

[ 1Dt = ) do -

Bp(0)\B;r (%)

-n f Hy,(Mp—mg) dx —n f HMp —mg) dx <

Br(20)\Br (o) B;g ()

< (MR_mR) wanil‘

1—A" 1—A" l_anrl
[( )—n2( inf H)R( - +A”)
n

1-1 xe B () n+1

= (Mg —mg) 0, R" ™

-(1_’1”)[1—1@( inf H)R(1- z)(

n 1_/1n+1 An ):|
1-4 x € Bp(wo)

+
n+l 1-2"  1-A"

= (MR—WLR) wanflC,l'

-[1—( inf H)R( " )(1—,1)(1—"“)—( inf H)R(Mn)]=
x e Br(xo) n+1 C C

l v e Bgr(x) y

= (Mg—mg) w,R"1C;

'[1—( inf H)R( )(1 /1)(1+ﬁ) n(inf, g, H)R
+1 C

xeBr(xp) y)

in+1
=)



Harnack’s inequalities for solutions ete. 85

Since there holds either My —mp < 2(u(x;) — mp) or Mp— mp <
< 2(Mp — u(x;)), we have either

J |Dn ; | (u —mg) doe —
Br(9)\Bjr (xo)

—n [ Hyy(u—myp) do <2u@) - mp) C,CF o, R,
BR(.%‘())

or

[ 1Dns (M=) da—

Bp(0)\B;r (%)

—n j Hy ,(My, — ) de < 2(M, — u(2y)) C,Ciaw, R"~ 1.
Bp(x)

where C; and Cj* are given respectively in (0.39) and (0.40). Inserting
these into (3.4) or (3.5), and subsequently insert what results in into (0.5)
or (0.6), we obtain (0.37) and (0.38).

Since there also holds either Mp — mp < 2(u(xy) — mp) or Mp—
—mp < 2(Mp — u(x,)), we have, either

j |Dy ;| (u — my) dc —

Br(x0)\Br (%)
-n J Hn ; (w — mp) de < 2(u(iy) —mg) C;Ci#fw,,R" 1,
Bpr(w)
or

J | Dy ;| (Mg —u) do —

Br(x0) \Br(x0)

-n f Hn, (Mg —u) de < 2(Mg — u(x,)) C, C¥ w,R" .
Bp()

Inserting these into (3.4) or (3.5), and subsequently insert what results

in into (0.5) or (0.6), we obtain (0.42) and (0.43) under the hypothesis of
(0.41).



86 Fei-tsen Liang

3.2. Proof of theorem 6.
Since there holds either Mp —mp < 2(u(x;) — mg) or Mp—mp<

<2(Mp — u(xy)), we obtain from (3.6) that either

J | Dn ; | (uley) — mpg) de <

Bp(x0)\B;r (x0)

1_&72
SZ( =) )(u(xl) —mg) w,R""1=2C,(u(x;) —mp) w,R" "1,
or

J Dy | (M — u(o) dae <
Br(x0)\Bir(x0)

n

2
- )(u(ml) —mp) @, R" 1 =2C,(My—u(x,)) w,R"" 1,

(
S
1

Inserting these into (3.4) or (3.5), and subsequently insert what results
in into (0.5) or (0.6), we obtain (0.48) and (0.49).

Since there also holds either Mp — mp < 2(u(xy) —myp) or Mp—
—mp < 2(Mp — u(x,)), we have, either

f | Dy ; | (ulwg) — mp) dac <

Br(x0) \Bir(x0)

1—A"
$2( ) )(u(xo)_mR)wnR"12201(71(900)—’%3)60”}3"1’
or

[ 1D0 My = i) der <
Br(x0)\Br (%)
1-A"
1-1

< 2( )(MR —u(xy) 0, R" 1 =2C,(Mp —u(xy)) ,,R" .

Inserting these into (3.4) or (3.5), and subsequently insert what results
in into (0.5) or (0.6), we obtain (0.51) and (0.52) under the hypothesis of
(0.50).
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Appendix. Proof of Proposition 3 and Proposition 4..

The equation (0.1) is the Euler equation of the functional
Fo@) = [V1+ |Dof’de+n | [H, t) dide.
Q Q0

And corresponding to the Dirichlet problem with boundary data 3 and
the capillarity problem with boundary contact angle 6 are the problems
of minimizing the respective functionals

T (v) + j lo—p|dIC,_,
o0Q
and
T (0) + f(cos@)vdf)fn,l
9Q

among all ve BV (Q), where J(, is the k-dimensional Hausdorff mea-
sure.
Alternatively, we consider the problem of minimizing the functional

tﬂv)=f\/1+ |Du|2dx+ffH(90, t) dadt + JK(xv”)d“){nfl’
0 Q0 oQ
with
Kx, v) = JV(OG,t) dt.
0

For the capillarity problem, we have
y(x, t) = cos O

and

v

K(x,t) = Jcos@dt.

0

For the Dirichlet problem, we have

V(my t) =1 _2¢W(x) t)
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and
K, u) = |u—f@)| = |f@)].

Here and throughout this section, ¢y is the characteristic function of the
subgraph V of v:

1, if t<o(x),

, 1) =
v, {o, it t = 0(x).

M. Miranda [22] introduced the notion of generalized solutions for
the minimal surface equation and used it successively both in the Dirich-
let problem in infinite domains [22] and in the problem of removable sin-
gularities [23]. E. Giusti in [11] and [12] used the same notion of gen-
erailized solutions respectively in the problem of maximal domains for
the mean curvature equation and boundary value problems for the mean
curvature equation.

The idea of generalized solutions originates from the observation
that a function u : Q+—R is a solution of (0.1) in £ if and only if its
subgraph

U={(x,t) e 2 xR, t<u(x)}
minimizes the functional
F.) = [ |Dpy|+n | Hpypdeds
QxR QxR
locally in © X R, in the sense that for every set V coinciding with U out-
side some compact set Kc Q2 X R, we have

j|D¢U| +njH¢dedtsj|D¢V| +njH¢Vdacdt.
K K K K

Moreover, a function % € BV (£2) minimizes Jin Q if and only if its sub-
graph minimizes the functional

FW) = [ [Dpy|+n [ Hpydedt+ [ ypyddc,.
QxR QxR A2 xR

Minimization is here to be understood in the following sense: for 7 > 0,
set

Qr=Qx[-T,T], 0Qr=02x[-T,T],
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and for UcQ,

Fp(U) = j |D¢ | +njH¢dedt— Jy¢)Udf)Cn.
Qr Qr 0Qr

We say that U minimizes Fyp in Qp if
Fr(U) < Fr(S)

for every Caccioppoli set Sc Qr. We say that U minimizes F in 2 x R if
U minimizes Fy in Qp for every 7> 0.

DEFINITION (Miranda[22]).

1) A function u: Q—[— oo, ©] is a generalized solution of the
equation (0.1) in Q if its subgraph U minimaizes the functional F,. local-
ly m 2 xR,

(2) A function u: Q+—[— o, ] is a generalized solution for the
Sfunction TF if its subgraph U minimizes I in Q.

We note that a generalized solution can take the values = « on a set
of positive n-dimensional Hausdorff measure. However, it follows from
Miranda [21] that if a generalized solution %#(x) can be modified on a set
of zero n-dimensional Hausdo rff measure to be locally bounded, then
u(x) is a classical solution of (0.1) in Q.

Proposition 5 below is derived in the proof of Theorem 1.1 of Giusti
[12]. The special case in Proposition 6 below where 1 =1 and 92 e C? are
shown by the proof of Theorem 3.2 of [12]. Proposition 6 is fully estab-
lished in Lemma 7.6 of Finn [3].

It is easy to see that Proposition 3 and Proposition 4 follow immedi-
ately from Proposition 5 and Proposition 6, together with a subsequent
consideration of U’ instead of U.

PRrROPOSITION 5. Let U minimize F.. locally in @ = Q2 X R. If zy=
= (X, ty) s a point in Q and if for all »>0 we have

|UT(ZO)|>0’

then, there exist positive constants Cy and R, depending only on n and
igf H such that

(A1) |U(20) | = Cor™*?,
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for every r < min (R, dist(z,, 9Q)), where we set
U,(zy) =UNC,(2),
with
Co(zp) ={z=(x, ) |x—ay| <r, [t—1| <7r}.

In particular, we can take

1
(A.2) Cp= ——
4n+1) kg 1)
and
1 1/n
onk —y ifing(ac,t)<0,
(A3) Ry= 1k @, |10f Hix, 1) |

o, ifing(ac,t)BO,
where we denote k) the isoperimetric constant in R™, m = 1.

PROPOSITION 6. Suppose that there exist constamts Q, >0 and ¥y,
0<y <1, such that

y(e,t) = —7%, for all xedQ and t>0,.

Suppose further that for some constant u, with uy <1 and C, depend-
mg only on 2, an inequality

(A.4) [ olde<u | |Do|du+Co [ |v]da,
R Q Q
holds for all ve BV (). Let U minimizes F in @ = Q X R, and let zy=
= (29, ty), ty> 0o+ 1, be a point of Q such that for every positive r
U,]>0,

where U, is defined as in Proposition 1. Then there exist constants R;>0
and C; >0 determined completely by n, igf H(x, t), ¥, u and Cgq such
that

(A5) |U.| =Cyr"*t,  for every r<R,.
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In particular, we can take

1-7

(A.6) Ci= ——M—.
16(" + ]-) k(n+ 1)

and if ing(x, t)=0,

(o)
(A7) R, = )

CQ k(n + 1)(2(/()77/)1/(71Jr D

where we set
1 1-Cu-1)y
C;*=min(—,#);
2 3y +1

if igf H(x, t) <0, we firstly take R, so small that

1/n
’

% -
A R, = min y Al
1 (Cgk(nﬂ)(gwn)umﬂ) L

5 1-QCu—-1)7y
b 20 +1) w0, |inf H]|

and then take

where we set

1—Qu—1)y —(u+1)nkg, |inf H|w,R,)"

C b — 1 Q

F*=min| —, — .

2 3y +1
We notice that Lemma 1.1 in Giusti [11] established (A.4) for 4 =1 in
the special case that 32 e C? and we have formulated this result as Lem-
ma 1 in 0.2 of our present work.

An inequality of the form (A.4) appears first in Emmer [2], with

u=\V1+L*>

for any Lipschitz domain with Lipschitz constant L. (See also [19, page
203]). On pages 141-143 of Finn [3], this result is extended to include do-
mains in which one or more corners with inward opening angle appear.
As pointed out on page 197 of [3], this extended result permits inward
cusps and even boundary segments that may physically coincide but are
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adjacent to different parts of Q2. However, it is pointed out on page 143 of
[3] that an outward cusp or a vertex of an outwa rd corner is not
permitted.

We end this section with a sketch of the reasoning in [3] and [12]
which leads to Propositions 5 and 6, mainly for the purpose of unifying
the notation designations in [3] and [12]. Indeed, from comparing the
values of the functionals F, and I taken by U with those taken by U\C,,
we obtain

j|D¢U| +njH¢dedts fqudf)C,z, if r< dist (zy, 3Q),
C, C, ac,

and

[ Doyl +n | Hopydudt+

QNC, QNC,

+ J y¢Ud3(?nsJ’¢Ud3Cn, if r= dist (zy, 3Q).
aQNC, aC,

Since

[1D¢0, 1= [1Dg | + [ ¢ pdox,
Q aC,

r

for almost all », the previous two inequalities lead respectively to

(A.9) j|D¢Ur|+njH¢Urdxdts2 j¢Ud3cn, if r< dist (zy, 3Q),

3C,

and

(A10) [ |Dgy,| +n[Hpy,dxdt+
Q Q

+ jmwdmsz j(pUdsfn, it r = dist (2, 6Q).
aQ

aC,
Setting
Hy (x) = min (irtlfH(ac, ), 0),
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the curvature term can be estimated as follows:

(A.11) j Hep y dadt > j Hy ¢y dwdt
Q

tot+r L
= —[|Hy |, 5, J |Cr|177ldt, by Hélder’'s inequality

ty—r

to+r
=~k lHo |, Bo(xy) J (j | D¢ C7«|) dt, by the isoperimetric inequality

to—7r
=~k l|Ho ”n,B,.(xo)f | D¢y, | -
Inserting this into (A.9), we obtain, if » < dist (z,, 9Q),

<2 [¢ydox,

aC,

(A.12) (1 = 1k 1Ho |, B,a)) J’ | Doy,
which yields

d
|UV| = J¢Ud3{7z
dr
aC,

1 _
= E(]- _nk(n)”HO ||n,B,4(x0))J’ |D¢ Url

N 1— %lﬂ(n)HHO_ ||n,BR(xo) | U1| ,,il
2k(71+1)

again by the isoperimetric inequality,

1 _n_
> |UT|»1+1’
4k(%+1)

=

1
2nk(n)

if we choose r so small that [|Hy [, g,y <

This leads to the estimate (A.1) with C; taken as in (A.2), whenever » <
< min (R, dist (2, 9Q)), with R, given in (A.3).
In case » = dist (z;, 9Q), we have to handle the third term on the right
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hand side of (A.10). By (A.4) and the isoperimetric inequality,

[ #0,d96<u]|Dpy,| +ColU,|
9Q Q@

1
+ Coky iy |U 77 [ |Dg o,

Su J | D¢y,
Q
Since we have

[1D9 0,189, = [ 1D | + [ ¢, 96,
Q 9Q

the last inequality leads to

+ Coke U, |1
@13 [y, " oo [1Dgs,
5Q l_CQk(n+1)|Ur|““Q

<

1
‘u+CQk(n+l) |C’r|m
< 1 J’|D¢Ur

’

1-Coke 1) |Cq« g
if r is so small that
1 1
(A~14) C.Qk(n+1)|cr|n+l sE'
This and the last identity yield
+1
(A.15) f|D¢UT|df)CnS “ : f|D¢> ol

1-=Cokyi1)|Cr| T g
From (A.11), (A.13) and (A.15), we obtain

(A16) n J Héy dedt+ f vy, dIC, >
Q aQ

1
e+ Cokg ey |Co| T (1) mkey 1Hy o, 5,0
4 1 + 1 : f|D¢Ur
I_Cgk(n+1)|cr|"“ 1_Cgk(n+1)|cr|”“ Q

=

Choosing r so small that (A.7) is satisfied if igf H =0 and (A.8) is satis-
fied if igf H <0, we know that (A.14) is satisfied and the right hand side
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of (A.16) is bounded below by (— a er » ) J|Dé |- Inserting this into
(A.10), we obtain @

1-5

(A1T) Jd)Ud:)CnZ TV f D¢ |-
ac, Q

From this, (A.14), (A.15) and the isoperimetric inequality, we obtain

1-5 1

d 1-y -
—|U, :f df){‘na—f Dpy|=—— U,| .
Al KX = 1Dou] U]

16 k(17,+1)

This leads to the estimate (A.5) with C; taken as in (A.6) and completes
the proof of Proposition 6.
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