@article{RSMUP_2004__112__71_0, author = {Arikan, A. and \"Ozen, T.}, title = {On a generalization of groups with all subgroups subnormal}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {71--76}, publisher = {Seminario Matematico of the University of Padua}, volume = {112}, year = {2004}, mrnumber = {2109952}, zbl = {1119.20029}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2004__112__71_0/} }
TY - JOUR AU - Arikan, A. AU - Özen, T. TI - On a generalization of groups with all subgroups subnormal JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2004 SP - 71 EP - 76 VL - 112 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2004__112__71_0/ LA - en ID - RSMUP_2004__112__71_0 ER -
%0 Journal Article %A Arikan, A. %A Özen, T. %T On a generalization of groups with all subgroups subnormal %J Rendiconti del Seminario Matematico della Università di Padova %D 2004 %P 71-76 %V 112 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2004__112__71_0/ %G en %F RSMUP_2004__112__71_0
Arikan, A.; Özen, T. On a generalization of groups with all subgroups subnormal. Rendiconti del Seminario Matematico della Università di Padova, Tome 112 (2004), pp. 71-76. http://archive.numdam.org/item/RSMUP_2004__112__71_0/
[1] Locally nilpotent p-groups whose proper subgroups are hypercentral or nilpotent-by-Chernikov, J. London Math. Soc., 2, 61 (2001), pp. 412-422. | MR | Zbl
,[2] Gruppen deren Untergruppen alle subnormal sind, Würzburg Ph.D. thesis Aus Karlstadt (1988). | Zbl
,[3] Torsionsgruppen, deren Untergruppen alle subnormal sind, Geometriae Dedicata, 31 (1989), pp. 237-244. | MR | Zbl
,[4] Auflösbarkeit von Gruppen deren untergruppen alle subnormal sind, Arch. Math., 54 (1990), pp. 232-235. | MR | Zbl
,[5] Finiteness Conditions and Generalized Soluble Groups, Vols. 1 and 2, (Springer-Verlag 1972). | Zbl
,[6] A course in the theory of groups, (Springer-Verlag, Heidelberg-Berlin-Newyork 1982). | MR | Zbl
,[7] A Frattini-like subgroup, Math. Proc. Camb. Phil. Soc., 77 (1975), pp. 247-257. | MR | Zbl
,[8] Examples of groups (Polygonal Publishing USA 1977). | MR | Zbl
,