On a variational theory of image amodal completion
Rendiconti del Seminario Matematico della Università di Padova, Tome 116 (2006), pp. 211-252.
@article{RSMUP_2006__116__211_0,
     author = {Masnou, Simon and Morel, Jean-Michel},
     title = {On a variational theory of image amodal completion},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {211--252},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {116},
     year = {2006},
     mrnumber = {2287348},
     zbl = {1150.49023},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2006__116__211_0/}
}
TY  - JOUR
AU  - Masnou, Simon
AU  - Morel, Jean-Michel
TI  - On a variational theory of image amodal completion
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2006
SP  - 211
EP  - 252
VL  - 116
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2006__116__211_0/
LA  - en
ID  - RSMUP_2006__116__211_0
ER  - 
%0 Journal Article
%A Masnou, Simon
%A Morel, Jean-Michel
%T On a variational theory of image amodal completion
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2006
%P 211-252
%V 116
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2006__116__211_0/
%G en
%F RSMUP_2006__116__211_0
Masnou, Simon; Morel, Jean-Michel. On a variational theory of image amodal completion. Rendiconti del Seminario Matematico della Università di Padova, Tome 116 (2006), pp. 211-252. http://archive.numdam.org/item/RSMUP_2006__116__211_0/

[1] L. Alvarez - Y. Gousseau - J.-M. Morel, The size of objects in natural and artificial images, Advances in Imaging and Electron Physics, 111 (1999) pp. 167-242.

[2] L. Ambrosio - V. Caselles - S. Masnou - J.-M. Morel, Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc., 3 (2001), pp. 39-92. | MR | Zbl

[3] L. Ambrosio - N. Fusco - D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, 2000. | MR | Zbl

[4] L. Ambrosio - S. Masnou, A direct variational approach to a problem arising in image reconstruction, Interfaces and Free Boundaries, 5 (2003), pp. 63-81. | MR | Zbl

[5] C. Ballester - M. Bertalmio - V. Caselles - G. Sapiro - J. Verdera, Filling-in by joint interpolation of vector fields and gray levels, IEEE Trans. On Image Processing, 10(8) (2001), pp. 1200-1211. | MR | Zbl

[6] G. Bellettini, Variational approximation of functionals with curvatures and related properties, J. of Conv. Anal., 4(1) (1997), pp. 91-108. | MR | Zbl

[7] G. Bellettini - G. Dal Maso - M. Paolini, Semicontinuity and relaxation properties of a curvature depending functional in 2D, Ann. Scuola Norm. Sup. Pisa Cl. Sci, (4) 20, no 2 (1993), pp. 247-297. | Numdam | MR | Zbl

[8] G. Bellettini - L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional, Ann. Inst. H. Poincaré, Anal. Non Lin., 21(6) (2004), pp. 839-880. | Numdam | MR | Zbl

[9] G. Bellettini - L. Mugnai, A varifolds representation of the relaxed elastica functional, Submitted. | Zbl

[10] M. Bertalmio - A. Bertozzi - G. Sapiro, Navier-Stokes, fluid dynamics, and image and video inpainting, In Proc. IEEE Int. Conf. on Comp. Vision and Pattern Recog., HawaõÈ, 2001.

[11] M. Bertalmio - G. Sapiro - V. Caselles - C. Ballester, Image inpainting, In Proc. ACM Conf. Comp. Graphics (SIGGRAPH), New Orleans, USA (2000), pp. 417-424.

[12] M. Bertalmio - L. Vese - G. Sapiro - S. Osher, Simultaneous structure and texture image inpainting, IEEE Transactions on Image Processing, 12(8) (2003), pp. 882-889.

[13] R. Bornard - E. Lecan - L. Laborelli - J.-H. Chenot, Missing data correction in still images and image sequences, In Proc. 10th ACM Int. Conf. on Multimedia, (2002), pp. 355-361.

[14] T.F. Chan - S.H. Kang - J. Shen, Euler's elastica and curvature based inpainting, SIAM Journal of Applied Math., 63 (2) (2002), pp. 564-592. | MR | Zbl

[15] T.F. Chan - J. Shen, Mathematical models for local deterministic inpaintings, SIAM Journal of Applied Math., 62(3) (2001), pp. 1019-1043. | MR | Zbl

[16] T.F. Chan - J. Shen, Non-texture inpainting by curvature-driven diffusion (CDD), Journal of Visual Comm. and Image Rep., 12(4) (2001), pp. 436-449.

[17] G. Citti - A. Sarti, A cortical based model of perceptual completion in the roto-translation space, Submitted. | Zbl

[18] A. Criminisi - P. Pérez - K. Toyama, Object removal by exemplar-based inpainting, In IEEE Int. Conf. Comp. Vision and Pattern Recog., vol. 2, (2003), pp. 721-728.

[19] G. Dal Maso, An Introduction to G-convergence, Birkhaüser, 1993. | MR | Zbl

[20] A. Efros - T. Leung, Texture synthesis by non-parametric sampling, In Proc. Int. Conf. on Comp. Vision, vol. 2, Kerkyra, Greece (1999), pp. 1033-1038.

[21] M. Elad - J.-L. Starck - D. Donoho - P. Querre, Simultaneous cartoon and texture image inpainting using Morphological Component Analysis, Applied and Comp. Harmonic Analysis, 2005, to appear. | MR | Zbl

[22] S. Esedoglu - S. Ruuth - R. Tsai, Threshold dynamics for shape reconstruction and disocclusion, Technical report, UCLA CAM Report 05-22, April 2005, In Proc. of IEEE Int. Conf. on Image Processing 2005.

[23] S. Esedoglu - J. Shen, Digital image inpainting by the Mumford-ShahEuler image model, European J. Appl. Math., 13 (2002), pp. 353-370. | MR | Zbl

[24] C. Fantoni - W. Gerbino, Contour interpolation by vector field combination, Journal of Vision, 3 (2003), pp. 281-303.

[25] Y. Gousseau, La distribution des formes dans les images naturelles, PhD thesis, CEREMADE, Université Paris IX, 2000.

[26] R. Grzibovskis - A. Heintz, A convolution-thresholding scheme for the Willmore flow, Preprint, 2003. | Zbl

[27] R. Hladky - S. Pauls, Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model, Submitted.

[28] G. Kanizsa, Organization in Vision: Essays on Gestalt Perception, Präger, 1979.

[29] S. Masnou, Filtrage et Désocclusion d'Images par Méthodes d'Ensembles de Niveau, PhD thesis, Université Paris-IX Dauphine, France, 1998.

[30] S. Masnou, Disocclusion: a variational approach using level lines, IEEE Trans. Image Processing, 11 (2002), pp. 68-76. | MR

[31] S. Masnou, Euler spirals for image amodal completion, In preparation.

[32] S. Masnou - J.-M. Morel, Level lines based disocclusion, In 5th IEEE Int. Conf. on Image Processing, Chicago, Illinois, October 4-7, 1998.

[33] G. Matheron, Random Sets and Integral Geometry, John Wiley, N.Y., 1975. | MR | Zbl

[34] Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations, In Amer. Math. Soc., editor, University Lecture Series, volume Col. 22, 2001. | MR | Zbl

[35] D. Mumford, Elastica and computer vision, In C.L. Bajaj, editor, Algebraic Geometry and its Applications, Springer-Verlag, New-York (1994), pp. 491-506. | MR | Zbl

[36] M. Nitzberg - D. Mumford, The 2.1-D Sketch, In Proc. 3rd Int. Conf. on Computer Vision, Osaka, Japan (1990), pp. 138-144.

[37] J. Petitot, Neurogeometry of V1 and Kanizsa contours, Axiomathes, 13 (2003), pp. 347-363.

[38] E. Villéger - G. Aubert - L. Blanc-Féraud, Image Disocclusion Using a Probabilistic Gradient Orientation, In Proc. Int. Conf. on Pattern Recog. (ICPR), Cambridge, U.K., 2004.

[39] L. Yaroslavsky - M. Eden, Fundamentals of Digital Optics, Birkhäuser, 1996. | MR | Zbl

[40] W.P. Ziemer, Weakly differentiable functions, Springer Verlag, 1989. | MR | Zbl