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Abelian Groups that cannot be Factored
Without Periodic Factor.

SANDOR SzABO (*)

ABSTRACT - The list of the finite abelian groups that cannot be factored into two of its
subsets without one factor being periodic is the same as the list of the finite
abelian groups that cannot be factored into any number of its subsets without
one factor being periodic.

1. Introduction.

Throughout this paper we will use multiplicative notation for abelian
groups. Let G be a finite abelian group. We denote the identity element of
G by e. Let B, Ay, ..., A, be subsets of G. We define the product 4;---A,
to be

{al"'an:al EAl,...,aneAn}-

Suppose B = A; - - - A,. We say that the product A; - - - A,, is direct if each b
in B is uniquely expressible in the form

b=ay--ay, a; €Ay, ...,y € Ay.

If B is a direct product of A;,...,A,, then the equation B=A4,---A4, is
said to be a factorization of B.

A subset A of a finite abelian group G will be called normalized if e € A.
The factorization G = A; - - - A,, is called normalized if each factor is nor-
malized. We say that A is periodic if there is an element a € G such that
a # e and aA = A. The element a is called a period of A. Note that if @ and
b are periods of A, then ab is a period of A unless ab = e. It follows that the
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periods of A augmented with the identity element form a subgroup H of G.
Moreover there is a subset B of G such that A = BH is a factorization of A.
If the group G is a direct product of cyclic groups of orders t4,...,ts re-
spectively, then we express this fact shortly saying that G is of type
(t1,...,ts). If from the factorization G = A, - - - A,, it follows that one of the
factors is periodic for any possible choice of the factors Ay, ..., A,, then we
say that G has the H,-property. (H, is an abbreviation for the Hajos
property with » factors.) Here we do not allow factors with only one ele-
ment and do not consider groups with only one element.

In 1949, G. Hajos [4] called for determining all finite abelian groups
with the Hq-property. The complete list of these groups first appeared in
1962 A. D. Sands [8].

", 9, ®* ¢, ®*,q,7), (p,q,7,8)
o @22 @222, @G22, (.2222)
(1, 9,2,2), (p,3,3), (3%,3), (2%,2),
(22,29, ®,p.

Here p,q,r,s are distinet primes the p =2 and p = 3 cases are not ex-
cluded and a > 1 is an integer. Groups whose type is on list (1) and their
subgroups have the Hq-property and other groups do not have the Hp-
property.

This result has applications in various fields. In geometry [11], combi-
natorics [5], coding theory [3], number theory [13], Fourier analysis [6].

If a group has the H,,-property for each possible choice of #, then we
say that G has the H-property. It is plain that groups with the H-property
have the Hy-property. We will show that groups with the Hs-property are
in fact the same as groups with the H-property. We express this fact more
formally as a theorem.

THEOREM 1. Let G be a finite abelian group. If G has the Ho-property,
then G has the H-property.

2. Replacing factors.

We say that in the factorization G = AB the factor B can be replaced by
B’ if G =AB' is also a factorization of G. If ¢ is an element of G, then
multiplying both sides of the factorization by ¢ we get the factorization
G = Gc = A(Bc). In other words B can be replaced by Bc for each ¢ € G.
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Note that B is periodic if and only if Bc is periodic. Let G = A; --- A, be a
factorization. Let a; € A44,...,a, € A, multiplying the factorization by
a;l---a;' we get the normalized factorization G = (a7'4;)---(a,'A4,).
Thus when we study factorizations with periodic factors we may restrict
our attention to normalized factorizations.

Note that G = AB is a factorization if and only if |G| = |A||B| and
AA1NBB™! = {e}. From this it is plain that B can be replaced by B~!.
Let G = AB be a factorization of G. Then each g € G is uniquely ex-
pressible in the form g = ab, a € A, b € B. We call a the A-coordinate of g
and we denote it by a(g). Similarly, we call b the B-coordinate of g and we
denote it by f(g). The coordinates of g make sense only relative to the
factorization G = AB. If A is a subset of a finite abelian group G and ¢ is an
integer, then A? will denote the set {a?:a € A}.

LEmMA 1. Let G = AB be a factorization of G and let A = {a1, ..., an}
For each g € G the elements a(gay),...,alga,) form a permutation of
A1yevey e

Proor. Clearly, a(ga;) € A. So we will show that a(ga;) = a(ga;) im-
plies a; = a;. From the equations
ga; = alga)flgas;), ga; = alga;)p(ga;)
we get the equations
g9 = algapflgaa;’, g = alga)pgapa;”.

Then f(ga;)a; 1= ﬂ(qaj)aj’l and a;f(ga;) = a;f(ga;). Now as a;,a; € A,
pga;), p(ga;) € B, from the factorization G = AB it follows that a; = a;.
This completes the proof.

LeEmMa 2. Let G = AB be a factorization of G and let q be a prime such
that q f|A|. Then G = AB is a factorization of G.

Proor. Chooseana € A, g € G and define T to be the set of all ¢ tuples
(®1,%2,...,%g), ®1,%2,...,04 €A

for which a(gxi2s - - - ¢4) = a. First note that |T| = |A|q_1. Indeed, choose
X1,%2, ...,%q—1 € A arbitrarily, then by Lemma 1, a[(gx1%2 - - - %—1)%¢] = @
has a unique solution for x,. Next note that if (x1,2»,...,%,) € T, then
(2, ...,%q,21) € T. We define a graph I". The vertices of I” are the elements
of T and we draw an arrow from the node (x1,a2,...,%,) to the node
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(2, ...,%q,21). The graph I is a union of disjoint cycles. The cycles are of
length 1 or oflength q. Whenaxy = x2 = - - - = 4, thenthenode (1, x2, . . ., )
is on a cycle of length 1. When @1, @2, . .., %, are not all equal, then the node

(1,22, ...,2,) is on a cycle of length q. As ¢ f|A| there must be a cycle of
length 1 in I". In other words there is an #; € A such that a(gaf) = a.

Consider the factorization G = AB. From ga? = a(ga?)p(gx?) using
a(gad) = a we get gx! = ap(ga?), then g = ax; 'p(ga?). Here ax;? € aA™,
Plgxl) € B and the equation holds for each g€ G. It follows that
G = (@A 9)B. Then G = A79B. Note that |G| = |A||B], |A7Y] < |A| imply
|G| = |A7Y||B| and so G = A~9B is a factorization. Now A~Y can be replaced
by A? and so it follows that G = AYB is a factorization.

This completes the proof.

LEmma 3. Let G = AB be a factorization such thate € A, |A| =pisa
prime. Then G = A'B is a factorization of G, where A'= {e,a,a?,...,aP71},
a €A\ {e}

ProOF. Note that G = A'B is a factorization of G whenever ¢ > 2, p Vt.
Indeed, as t is a product of primes we can apply Lemma 2 several times
starting with the factorization G = AB. Let A = {e,a1,az,...,a,-1}. The
fact that G = A'B is a factorization is equivalent to that the sets

eB,d\B,ayB, ..., a, \B

form a partition of G. Set A’ = {e, ay, a2, . . ., az_l }+. The fact that G = A'Bis
a factorization is equivalent to that the sets

eB,a;B,d2B, ...,al 'B

form a partition of G. Since G is finite it is enough to show that
ach N aﬁgB = () for each ¢,j, 0 <7 <j < p — 1. Assume the contrary that
a,BNa).B # (. Multiplying by a,’ we get eBNnaj ‘B #0. Set t =j —i.
Clearly,1 <t < p — 1 and so ¢ is prime to p. Now eB N a{B # () contradicts
the fact that G = A’B is a factorization of G.

This completes the proof.

3. Periodicity forcing factorization types.

IfG=A;---A,isafactorization of G and |A1]| = ¢1, . .., |Ax| = qn, then
we call the » tuple (q1,...,q,) the type of the factorization. If from each
G = A; --- A, factorization of type (q1, . . ., ¢,,) it follows that at least one of
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the factors is always periodic we call (q1,...,q9,) a periodicity forcing
factorization type for G. In 1965 L. Rédei [7] proved that a factorization
type (q1, - - -, qy) is always periodicity forcing if ¢, .. ., g, are primes.

LEMMA 4. Let 1 = p1-- - ps, where pa,. .., ps are primes. If (q1, ..., qn)
18 a periodicity forcing factorization type for an abelian group, then so is

(pla <o Pss 42, 7(In)-

Proor. Suppose that (g1, ...,q,) is a periodicity forcing factorization
type for the finite abelian group G and consider a normalized factorization

@) G=B:--BsAs-- Ay,

where
|Bl| =Pt ‘B9| = Ps; |A2‘ =q2,..., |Aﬂ| = qn-

We would like to show that at least one of the factors By, ...,Bs, As, ..., A,
is periodic. If one of the factors is periodic then there is nothing to prove so
we assume that none of the factors is periodic.

If the order of each element in B; is a power of p;, then we define C; to
be B;. Assume that there are elements in B; whose order is not a power of
p;. In factorization (2), by Lemma 2, B; can be replaced by a normalized
subset C; such that the orders of each element in C; is a product of at most
two distinet primes and C; is not a subgroup of G. Note that as |C;| is a
prime and e € C;, C; is periodic if and only if C; is a subgroup of G. Setting
C =C;---Cs we get a factorization G = CAg - - - A,,. The type of this fac-
torization is (q1,¢qe,...,q,). So by our assumption one of the factors
C,Aqg,..., A, is periodic. If one of Az ..., A, is periodic, then we are done
so we assume that C is periodic. Now a periodic subset C of G is factored
into subsets Ci,...,C,. In addition, there is a subset A of G such that
G = CA is a factorization. Simply set A = Ay ---A,. The hypotheses of
Theorem 2 of [2] are satisfied therefore this theorem gives that at least one
of the factors (i, ..., Cs must be periodic.

This contradiction completes the proof.

If A is a subset and y is a character of G, then we will use the notation
7(A) to denote the sum
> .

acA

In this paper character of G always means irreducible character of G. The
set of all characters y of G with y(A) = 0 is called the annihilator set of A
and will be denoted by Ann(A).
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LeEmMmA 5. Let G be a finite abelian group with the Ha-property and
let g1 = p be a prime. In the p > 3 case we assume that the p-component
of G is cyclic. (In the p = 2 case nothing is assumed about the p-com-
ponent of G.) Then (q1, qz,qs3) is a periodicity forcing factorization type
for G.

Proor. Let G = A1A2A3 be a normalized factorization of G such that
|A1| = q1, |A2| = g2, |As| = gs. We would like to show that one of the factors
Aj,As, Agis periodic. If one of Ay, Az, A3 is periodic, then there is nothing to
prove. So we assume that none of the factors is periodic. Assume that p > 3.
In this case the p-component of G is cyclic. By Lemma 3, A; can be replaced
by A} = {e,a,d?,...,aP~'} for each a € Ay \ {e}. If A} is a subgroup of G
for each a € A; \ {e}, then as the p-component of G is cyclic, 4; is equal to
the unique subgroup of G that has p elements. But 4; is not a subgroup.
This contradiction gives that for some a € A; \ {e} the subset A} is not a
subgroup. This is equivalent to a? # e. For the remaining part of the proof
we choose an A} which is not a subgroup. In the p =2 case we set
A} = A; = {e,a}. Here a® # e as A; is not a subgroup. Thus a” # e holds in
both of the cases p =2 or p > 3.

From the factorization G = (4]A2)As, by the Hy-property of G, it fol-
lows that A|A» or As is periodic. Since As is not periodie, A} A is periodic,
say with period g, that is, A{A>g = A} A>. We claim that y(42) = 0 holds for
all characters y of G with y(¢g) # 1 and y(a”) # 1. In order to prove the claim
assume that y(g) #1 and y(a?) #1. As x(g) #1 from yx(AjA2)x(9) =
= y(A}Az2) we get 0 = y(A]A2) = y(ADy(As). From y(aP) # 1 it follows that
(A7) # 0. Therefore y(42) = 0. The fact that y(a?) # 1 and y(g) # 1 imply
x(A2) = 0 is equivalent to

Ann((a”)) N Ann({(g)) C Ann(Ay).
By Theorem 2 of [10], there are subsets X, Y of G such that
Az = X(a") UY(9g),

where the products are direct and the union is disjoint. Similarly, from the
factorization G = As(A]As) it follows that A} As is periodic, say with period
h. Then there are subsets U, V of G such that

As = Ula?) UV {h),

where the products are direct and the union is disjoint.
If X = ), then A; is periodic with period g. If U = (), then Aj is periodic
with period /. So we may assume that X # () and U # (. Choose x € X,
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u € U. Multiply the factorization G = 414243 by g = v 'u~! to get the
factorization

G =Gg = A4 H(Asu™).

Now (aP) C Agx~!, (aP) C Agu~! contradict the definition of the factor-
ization.
This completes the proof.

4. Proof of Theorem 1.

We consider a finite abelian group G with the Hs-property. Thus G is a
subgroup of a group whose type is on list (1) and we try to establish that G
has the H,,-property for each possible choice of 7. The » = 1 case is trivial
so we assume that n > 2.

Let G be a subgroup of a group of type (p*,q) andlet G = A; --- A, be
a factorization of G. If G is a p-group, then |4;|,...,|A,| are powers of p.
If G is not a p-group, then ¢ divides one of |44],...,|4,| and ¢q can divide
only one of |A1],...,|A,|. Say ¢q||A:| and plainly each of |A;], ..., |A,| must
be a power of p. Now the p-component of G is cyclic and each of
|Az|,...,]Ax| is a power of p. The conditions of Theorem 2 of [9] are met.
By this theorem, one of the factors Ay, ..., A, is periodic and so G has the
H,-property. Since n > 2 was arbitrary G has the H-property.

By Theorem 1 of [12] (or by Theorem 10 of [1]), a group of type (2%,2)
has the H-property.

We inspect the remaining groups (7 in a case by case manner and sort
out the arising cases using Rédei’s theorem or Lemma 4 or Lemma 5.

(1) Suppose the type of G is one of the following

(3) (p37272)’ (p272’272)7 (p72727272)'

Note that |G| is a product of 5 primes. This is why we treat these cases
together. Let G =A;---A, be a factorization of G. If the type of the
factorization is (q1, g2, q3, q4, 5), then each g; is a prime and Rédei’s the-
orem gives that one of the factors is periodic. If the factorization type is
(91, g2, g3, q4), then only one ¢; can be composite, say q4. The Ho-property
of G gives that (919293, q4) is a periodicity forcing factorization type for G.
Now by Lemma 4, (q1, 92, 93, 4) is a periodicity forcing factorization type
for G. If the factorization type is (q1, g2, ¢3), then at least one of the ¢;’s is a
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prime, say q; is a prime, and Lemma 5 applies. If G is a proper subgroup of
a group whose type is on list (3), then we can use a similar but to some
extent simpler argument.

(2) Let us assume that the type of G is one of the next

L¢P @qr)  ®.qrs)

4
& P42 (.q.2,2) @22,

Note that |G| is aproduct of 4 primes. Let G = A; - - - A,, be a factorization of
G. If the factorization type is (q1, g2, q3, q4), then Rédei’s theorem implies
that this factorization type is periodicity forcing. If the factorization type is
(91, 92, q3), then Lemma 4 is applicable. If G is a proper subgroup of a group
whose type is on list (4), then an analogous but slightly simpler reasoning
can be used.

(3) The case when G is of type (p,3,3), (32,3), (p, p), that is, when |G| is a
product of at most 3 primes is rather trivial.

This inspection completes the proof.
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