Temperate Holomorphic Solutions and Regularity of Holonomic D-modules on Curves.

Ana Rita Martins (*)

ABSTRACT - In [8], Kashiwara and Schapira introduced the notion of regularity for ind-sheaves and conjectured that a holonomic \mathcal{D} -module on a complex manifold is regular if and only if its complex of temperate holomorphic solutions is regular. Our aim is to prove this conjecture in the one-dimensional case.

Introduction.

In [8], the authors introduced the notions of microsupport and regularity for ind-sheaves. Let X be a complex manifold, \mathcal{M} a coherent \mathcal{D}_{X} -module and consider its complex of temperate holomorphic solutions

$$Sol^{t}(\mathcal{M}) := R\mathcal{I}hom_{\beta_{Y}\mathcal{D}_{X}}(\beta_{X}\mathcal{M}, \mathcal{O}_{X}^{t}).$$

It is proved in [8] that the microsupport of $Sol^t(\mathcal{M})$ coincides with the characteristic variety of \mathcal{M} . Moreover, if \mathcal{M} is regular holonomic, then $Sol^t(\mathcal{M})$ is regular. In fact, Kashiwara and Schapira made the following conjecture:

(K-S)-conjecture. Let \mathcal{M} be a holonomic \mathcal{D}_X -module. Then \mathcal{M} is regular holonomic if and only if $R\mathcal{I}hom_{\beta_Y\mathcal{D}_X}(\beta_X\mathcal{M},\mathcal{O}_X^t)$ is regular.

In this paper, we prove, in dimension one, that the regularity of $Sol^t(\mathcal{M})$ implies the regularity of the holonomic \mathcal{D}_X -module \mathcal{M} . More precisely, we show that $Sol^t(\mathcal{M})$ is irregular when the holonomic \mathcal{D}_X -module \mathcal{M} has an irregular singularity. This proof relies in several steps. First we reduce to the case $\mathcal{M} = \mathcal{D}_X^m/\mathcal{D}_X^m P$, where P is a matrix of differential operators of the

(*) Indirizzo dell'A.: Centro de Álgebra da Universidade de Lisboa, Complexo 2, Avenida Prof. Gama Pinto,1699 Lisboa Portugal.

E-mail: arita@mat.fc.ul.pt

form $z^N \partial_z I_m + A(z)$, with $m, N \in \mathbb{N}$, I_m the identity matrix of order m and A a $m \times m$ matrix of holomorphic functions on a neighborhood of the origin. Then we show that it is enough to prove the irregularity of $\mathcal{S}^t := H^0(Sol^t(\mathcal{M}))$ and we give a characterization of \mathcal{S}^t in a sector. From this characterization we easily conclude a contradiction by assuming the regularity of \mathcal{S}^t at (0;0), which completes the desired proof.

The contents of this paper are two sections as follows.

In Section 1, we start with a quick review on sheaves, ind-sheaves, microsupport and regularity for ind-sheaves and we recall the results on the microsupport and regularity of $Sol^t(\mathcal{M})$, proved in [8].

Section 2 is dedicated to the proof of the irregularity of $Sol^t(\mathcal{M})$, when \mathcal{M} is an irregular holonomic \mathcal{D}_X -module on an open neighborhood X of 0 in \mathbb{C} .

Acknowledgments. We thank P. Schapira who suggested us to solve the (K-S)-conjecture in dimension one, using the tools of [12], and made useful comments during the preparation of this manuscript. Finally, we thank T. Monteiro Fernandes for many useful advises.

1. Notations and review.

We will follow the notations in [8].

SHEAVES. Let X be a real analytic n-dimensional manifold. We denote by $\pi: T^*X \to X$ the cotangent bundle to X. We identify X with the zero section of T^*X and we denote by \dot{T}^*X the set $T^*X \setminus X$.

Let **k** be a field. We denote by $\operatorname{Mod}(\mathbf{k}_X)$ the abelian category of sheaves of **k**-vector spaces on X and by $D^b(\mathbf{k}_X)$ its bounded derived category. For $a,b \in \mathbb{R},\ a < b$ (resp. $k \in \mathbb{Z}$), we denote by $D^{[a,b]}(\mathbf{k}_X)$ (resp. $D^{\geq k}(\mathbf{k}_X)$) the full additive subcategory of $D^b(\mathbf{k}_X)$ consisting of objects F satisfying $H^j(F) = 0$, for any $j \notin [a,b]$ (resp. j < k).

We denote by $\mathbb{R}-\mathbb{C}(k_X)$ the abelian category of \mathbb{R} -constructible sheaves of k-vector spaces on X and by $D^b_{\mathbb{R}-\mathbb{C}}(k_X)$ the full subcategory of $D^b(k_X)$ consisting of objects with \mathbb{R} -constructible cohomology.

For an object $F \in D^b(\mathbf{k}_X)$, we denote by SS(F) the *microsupport of F*, a closed \mathbb{R}^+ -conic involutive subset of T^*X . We refer to [9] for details.

IND-SHEAVES ON REAL MANIFOLDS. Let X be a real analytic manifold. We denote by $I(\mathbf{k}_X)$ the abelian category of ind-sheaves on X, that is, the ca-

tegory of ind-objects of the category $\operatorname{Mod}^c(\mathbf{k}_X)$ of sheaves with compact support on X (see [7]).

Recall the natural faithful exact functor

$$\iota_X: \operatorname{Mod}(\boldsymbol{k}_X) \to \operatorname{I}(\boldsymbol{k}_X); F \mapsto ``\lim_{U \subset X \atop U \text{ open}} "F_U.$$

We usually don't write this functor and identify $Mod(\mathbf{k}_X)$ with a full abelian subcategory of $I(\mathbf{k}_X)$ and $D^b(\mathbf{k}_X)$ with a full triangulated subcategory of $D^b(I(\mathbf{k}_X))$.

The category $I(k_X)$ admits an internal hom denoted by $\mathcal{I}hom$ and this functor admits a left adjoint, denoted by \otimes . If $F \simeq \text{``lim}\, \text{'`}F_i$ and $G \simeq \text{``lim}\, \text{''}G_j$, then:

$$egin{aligned} \mathcal{I}hom(G,F) &\simeq arprojlim_{\overline{j}} ``arprojlim_{\overline{i}}"\mathcal{H}om(G_j,F_i), \ &G\otimes F \simeq ``arprojlim_{\overline{j}}"`arprojlim_{\overline{i}}"(G_j\otimes F_i). \end{aligned}$$

The functor ι_X admits a left adjoint

$$\alpha_X: \mathrm{I}(\pmb{k}_X) o \mathrm{Mod}(\pmb{k}_X); F = ``\lim_{\stackrel{\longrightarrow}{i}}"F_i \mapsto \lim_{\stackrel{\longrightarrow}{i}} F_i.$$

This last functor also admits a left adjoint $\beta_X : \operatorname{Mod}(k_X) \to \operatorname{I}(k_X)$. Both functors α_X and β_X are exact. We refer to [7] for the description of β_X .

Let X be a real analytic manifold. We denote by $\mathbb{R}-\mathbb{C}^c(k_X)$ the full abelian subcategory of $\mathbb{R}-\mathbb{C}(k_X)$ consisting of \mathbb{R} -constructible sheaves with compact support. We denote by $\mathbb{IR}-\mathbb{c}(k_X)$ the category $\mathbb{Ind}(\mathbb{R}-\mathbb{C}^c(k_X))$ and by $D^b_{\mathbb{IR}-\mathbb{c}}(\mathbb{I}(k_X))$ the full subcategory of $D^b(\mathbb{I}(k_X))$ consisting of objects with cohomology in $\mathbb{IR}-\mathbb{c}(k_X)$.

THEOREM 1.1 ([7]). The natural functor $D^b(I\mathbb{R}-\mathbf{c}(\mathbf{k}_X)) \to D^b_{I\mathbb{R}-\mathbf{c}}(I(\mathbf{k}_X))$ is an equivalence of categories.

Recall that there is an alternative construction of $I\mathbb{R}-c(k_X)$, using Grothendieck topologies. Denote by $\operatorname{Op}_{X_{sa}}$ the category of open subanalytic subsets of X. We may endow this category with a Grothendieck topology by deciding that a family $\{U_i\}_i$ in $\operatorname{Op}_{X_{sa}}$ is a covering of $U\in\operatorname{Op}_{X_{sa}}$ if for any compact subset K of X, there exists a finite subfamily which covers $U\cap K$. One denotes by X_{sa} the site defined by this topology and by $\operatorname{Mod}(k_{X_{sa}})$ the category of sheaves on X_{sa} (see [1] and [7]). We denote by $\operatorname{Op}_{X_{sa}}^c$ the subcategory of $\operatorname{Op}_{X_{sa}}$ consisting of relatively compact open subanalytic subsets

of X and for $U \in \operatorname{Op}_{X_{sa}}$ we denote by $U_{X_{sa}}$ the category $\operatorname{Op}_{X_{sa}} \cap U$ with the topology induced by X_{sa} .

Let $\rho: X \to X_{sa}$ be the natural morphism of sites. We have functors

$$\operatorname{Mod}({\pmb k}_X)\mathop{
ightleftharpoons}_{
ho^{-1}}^{
ho_*}\operatorname{Mod}({\pmb k}_{X_{sa}}),$$

and we still denote by ρ_* the restriction of ρ_* to $\mathbb{R}-\mathrm{C}(k_X)$ and to $\mathbb{R}-\mathrm{C}^c(k_X)$. We may extend the functor $\rho_*:\mathbb{R}-\mathrm{C}^c(k_X)\to\mathrm{Mod}(k_{X_{sa}})$ to $\mathrm{I}\mathbb{R}-\mathrm{c}(k_X)$, by setting:

$$\begin{array}{ccccc} \lambda: & \mathrm{IR-c}(\pmb{k}_X) & \to & \mathrm{Mod}(\pmb{k}_{X_{sa}}) \\ & & \lim\limits_{\stackrel{\longrightarrow}{i}} {}^{n}F_{i} & \mapsto & \lim\limits_{\stackrel{\longrightarrow}{i}} {}^{n}\rho_{*}F_{i}. \end{array}$$

For $F \in I\mathbb{R} - c(k_X)$, an alternative definition of $\lambda(F)$ is given by the formula

$$\lambda(F)(U) = \operatorname{Hom}_{\mathrm{IR}-\mathbf{c}(\boldsymbol{k}_{V})}(\boldsymbol{k}_{U}, F).$$

Theorem 1.2 ([7]). The functor λ is an equivalence of abelian categories.

Most of the time, thanks to λ , we identify $I\mathbb{R} - c(\mathbf{k}_X)$ with $Mod(\mathbf{k}_{X_{on}})$.

TEMPERED DISTRIBUTIONS. Let X be a real analytic manifold. Denote by $\mathcal{D}b_X$ the sheaf of distributions on X. For each open subanalytic subset $U \subset X$, we denote by $\mathcal{D}b_X^t(U)$ the space of tempered distributions on U, defined by the exact sequence

$$0 \to \Gamma_{X \setminus U}(X; \mathcal{D}b_X) \to \Gamma(X; \mathcal{D}b_X) \to \mathcal{D}b_X^t(U) \to 0.$$

It is proved in [7] that $U \mapsto \mathcal{D}b_X^t(U)$ is a sheaf on the subanalytic site X_{sa} , hence defines an ind-sheaf. We call $\mathcal{D}b_X^t$ the ind-sheaf of tempered distributions. This ind-sheaf is well-defined in the category $\operatorname{Mod}(\beta_X \mathcal{D}_X)$, where \mathcal{D}_X denotes the sheaf of analytic finite-order differential operators.

Tempered holomorphic functions. Let X be a complex analytic manifold. One defines the ind-sheaf of tempered holomorphic functions as:

$$\mathcal{O}_{X}^{t}:=R\mathcal{I}hom_{eta\mathcal{D}_{\overline{X}}}(eta\mathcal{O}_{\overline{X}},\mathcal{D}b_{X_{\mathbb{R}}}^{t}),$$

where \overline{X} denotes the complex conjugate manifold, $X_{\mathbb{R}}$ the underlying real analytic manifold, identified with the diagonal of $X \times \overline{X}$, and $\mathcal{D}_{\overline{X}}$ the sheaf of rings of holomorphic differential operators of finite order over \overline{X} . \mathcal{O}_X^t is

actually an object of $D^b(\beta_X \mathcal{D}_X)$ and it is not concentrated in degree 0 if dim X > 1. When X is a complex analytic curve, \mathcal{O}_X^t is concentrated in degree 0. Moreover, \mathcal{O}_X is ρ_* -acyclic and \mathcal{O}_X^t is a sub-ind-sheaf of $\rho_*\mathcal{O}_X$.

We end this section by recalling two results of G. Morando, which will be useful in our proof.

THEOREM 1.3 ([2]). Let X be an open subset of \mathbb{C} and $f \in \mathcal{O}_{\mathbb{C}}(X)$. Let $U \in \operatorname{Op}_{X_{sq}}^c$ such that $f|_{\overline{U}}$ is an injective map. Let $h \in \mathcal{O}_{\mathbb{C}}(f(U))$. Then $h \circ f \in \mathcal{O}_X^t(U)$ if and only if $h \in \mathcal{O}_{\mathbb{C}}^t(f(U))$.

PROPOSITION 1.4 ([2]). Let $p \in z^{-1}\mathbb{C}[z^{-1}]$ and $U \in \operatorname{Op}_{\mathbb{C}_{sa}}^c$ with $0 \in \partial U$. The conditions below are equivalent.

- (i) $\exp(p(z)) \in \mathcal{O}_{\mathbb{C}}^t(U)$.
- (ii) There exists A > 0 such that Re(p(z)) < A, for all $z \in U$.

MICROSUPPORT AND REGULARITY FOR IND-SHEAVES. We refer to [8] for the equivalent definitions for the microsupport SS(F) of an object $F \in D^b(I(\mathbf{k}_X))$. We shall only recall the following useful properties of this closed conic subset of T^*X .

Proposition 1.5. (i) For $F \in D^b(\mathrm{I}(\pmb{k}_X))$, one has $SS(F) \cap T_X^*X = \mathrm{supp}(F)$.

- (ii) Let $F \in D^b(\mathbf{k}_X)$. Then $SS(\iota_X F) = SS(F)$.
- (iii) Let $F \in D^b(I(\mathbf{k}_X))$. Then $SS(\alpha_X(F)) \subset SS(F)$.
- (iii) Let $F_1 \to F_2 \to F_3 \stackrel{+1}{\longrightarrow}$ be a distinguished triangle in $D^b(I(\mathbf{k}_X))$. Then $SS(F_i) \subset SS(F_i) \cup SS(F_k)$, for $\{i,j,k\} = \{1,2,3\}$.

Let J denotes the functor $J: D^b(\mathrm{I}(\boldsymbol{k}_X)) \to (D^b(\mathrm{Mod}^c(\boldsymbol{k}_X)))^\wedge$ (where $(D^b(\mathrm{Mod}^c(\boldsymbol{k}_X)))^\wedge$ denotes the category of functors from $D^b(\mathrm{Mod}^c(\boldsymbol{k}_X))^\mathrm{op}$ to **Set**) defined by:

$$J(F)(G) = \operatorname{Hom}_{D^b(\mathrm{I}(k_X))}(G, F),$$

for every $F \in D^b(\mathbf{I}(\mathbf{k}_X))$ and $G \in D^b(\mathrm{Mod}^c(\mathbf{k}_X))$.

DEFINITION 1.6 ([8]). Let $F \in D^b(\mathrm{I}(k_X))$, $\Lambda \subset T^*X$ be a locally closed conic subset and $p \in T^*X$. We say that F is regular along Λ at p if there exists F' isomorphic to F in a neighborhood of $\pi(p)$, an open neighborhood U of p with $\Lambda \cap U$ closed in U, a small and filtrant category I and a functor $I \to D^{[a,b]}(k_X)$; $i \mapsto F_i$ such that $J(F') \simeq \text{``lim''} J(F_i)$ and $SS(F_i) \cap U \subset \Lambda$.

Otherwise, we say that F is irregular along Λ at p.

We say that F is regular at p if F is regular along SS(F) at p. If F is regular at each $p \in SS(F)$, we say that F is regular.

PROPOSITION 1.7 ([8]). (i) Let $F \in D^b(\mathbf{I}(\mathbf{k}_X))$. Then F is regular along any locally closed set Λ at each $p \notin SS(F)$.

- (ii) Let $F_1 \to F_2 \to F_3 \xrightarrow{+1}$ be a distinguished triangle in $D^b(I(\mathbf{k}_X))$. If F_j and F_k are regular along Λ , so is F_i , for $i,j,k \in \{1,2,3\}$, $j \neq k$.
 - (iii) Let $F \in D^b(\mathbf{k}_X)$. Then $\iota_X F$ is regular.

TEMPERATE HOLOMORPHIC SOLUTIONS OF \mathcal{D} -MODULES. Let X be a complex manifold and let \mathcal{M} be a coherent \mathcal{D}_X -module. Set

$$Sol(\mathcal{M}) = R\rho_*R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M}, \mathcal{O}_X),$$

$$Sol^t(\mathcal{M}) = R\mathcal{I}hom_{\beta_X \mathcal{D}_X}(\beta_X \mathcal{M}, \mathcal{O}_X^t).$$

The equality:

$$(1.1) SS(Sol^t(\mathcal{M})) = Char(\mathcal{M}),$$

was obtained by M. Kashiwara and P. Schapira in [8], where these authors also proved that the natural morphism $Sol^t(\mathcal{M}) \to Sol(\mathcal{M})$ is an isomorphism, when \mathcal{M} is a regular holonomic \mathcal{D}_X -module. This gives the "only if" part of the (K-S)-Conjecture.

2. Proof of the (K-S)-Conjecture in dimension one.

In this section, we consider \mathbb{C} endowed with the holomorphic coordinate z and X will denote an open neighborhood of 0 in \mathbb{C} . We shall prove that, for every irregular holonomic \mathcal{D}_X -module \mathcal{M} , $Sol^t(\mathcal{M})$ is irregular, using a similar argument as in the Example of [8].

We shall first reduce the proof to the case where $\mathcal{M} = \mathcal{D}_X/\mathcal{D}_X P$, for some $P \in \mathcal{D}_X$.

Let \mathcal{M} be an irregular holonomic \mathcal{D}_X -module and let us denote by $Char(\mathcal{M})$ its characteristic variety. Since \mathcal{M} is holonomic it is locally generated by one element and we may assume \mathcal{M} is of the form $\mathcal{D}_X/\mathcal{I}$, for some coherent left ideal \mathcal{I} of \mathcal{D}_X . We may also assume that, locally at $0 \in \mathbb{C}$, $Char(\mathcal{M}) \subset T_X^*X \cup T_{\{0\}}^*X$. Moreover, we may find $P \in \mathcal{I}$ such that the kernel of the surjective morphism

$$\mathcal{D}_X/\mathcal{D}_XP o\mathcal{M} o 0,$$

is isomorphic to a regular holonomic \mathcal{D}_X -module \mathcal{N} (see, for example, Chapter VI of [10]). Therefore, we have an exact sequence

$$0 \to \mathcal{N} \to \mathcal{D}_X/\mathcal{D}_X P \to \mathcal{M} \to 0$$
,

and we get the distinguished triangle

$$Sol^t(\mathcal{M}) \to Sol^t(\mathcal{D}_X/\mathcal{D}_X P) \to Sol^t(\mathcal{N}) \stackrel{+1}{\longrightarrow} .$$

Since $Sol^t(\mathcal{N})$ is regular, by Proposition 1.7, $Sol^t(\mathcal{M})$ will be regular if and only if $Sol^t(\mathcal{D}_X/\mathcal{D}_X P)$ is. Therefore, we may assume from the beginning that $\mathcal{M} = \mathcal{D}_X/\mathcal{D}_X P$, for some $P \in \mathcal{D}_X$, having an irregular singularity at the origin.

Let us now recall the following result, due to G. Morando:

THEOREM 2.1 ([2]). Let \mathcal{M} be a holonomic \mathcal{D}_X -module. The natural morphism

$$H^1(Sol^t(\mathcal{M})) \to H^1(Sol(\mathcal{M})),$$

is an isomorphism.

The Theorem above together with the results in [4] entails that:

$$H^1(Sol^t(\mathcal{M})) \simeq H^1(Sol(\mathcal{M})) \simeq \mathbb{C}^m_{\{0\}},$$

for some $m \in \mathbb{N}$. Then $H^1(Sol^t(\mathcal{M}))$ is regular and $SS(H^1(Sol^t(\mathcal{M}))) = T^*_{\{0\}}X$.

As in [8], let us set for short

$$\mathcal{S}^t := H^0(Sol^t(\mathcal{M})) \simeq \mathcal{I}hom_{\beta_v,\mathcal{D}_v}(\beta_v,\mathcal{M},\mathcal{O}_v^t),$$

$$\mathcal{S}:=H^0(Sol(\mathcal{M}))\simeq \rho_*\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},\mathcal{O}_X)\simeq ker(\rho_*\mathcal{O}_X\stackrel{P}{\rightarrow}\rho_*\mathcal{O}_X).$$

Remark that, since $\dim X = 1$, one has a monomorphism $S^t \to S$. Moreover, we have the following distinguished triangle:

$$\mathcal{S}^t \to Sol^t(\mathcal{M}) \to H^1(Sol^t(\mathcal{M}))[-1] \stackrel{+1}{\longrightarrow} .$$

Therefore, one has

$$SS(S^t) \subset Char(\mathcal{M}) \cup T^*_{\{0\}}X \subset T^*_XX \cup T^*_{\{0\}}X,$$

and S^t will be irregular if and only if $Sol^t(\mathcal{M})$ is.

The problem is then reduced to prove the irregularity of \mathcal{S}^t , for an irregular holonomic \mathcal{D}_X -module of the form $\mathcal{M} = \mathcal{D}_X/\mathcal{D}_X P$, with $P \in \mathcal{D}_X$.

Moreover, we may assume P is of the form $P=z^N\partial_z^m+\sum\limits_{k=0}^{m-1}a_k(z)\partial_z^k$, for some $N,m\in\mathbb{N}$.

Let U be an open neighborhood of the origin in \mathbb{C} . The problem of finding the solutions of the differential equation Pu=0 in $\mathcal{O}_X(U)$ is equivalent to the one of finding the solutions in $\mathcal{O}_X(U)^m$ of a system of ordinary differential equations defined by a matrix of differential operators of the form

$$z^N \partial_z I_m + A(z),$$

where $m, N \in \mathbb{N}$, I_m is the identity matrix of order m and $A \in M_m(\mathcal{O}_X(U))(^1)$. From now on we denote by P the system

$$(2.1) P = z^N \partial_z I_m + A(z),$$

and we reduce to the case where $\mathcal{M} = \mathcal{D}_X^m/\mathcal{D}_X^m P$, so that

$$\mathcal{S} \simeq \rho_* \mathcal{H}om_{\mathcal{D}_X}(\mathcal{D}_X^m/\mathcal{D}_X^m P, \mathcal{O}_X),$$

and

$$\mathcal{S}^t \simeq \mathcal{I}hom_{\beta_X \mathcal{D}_X}(\beta_X(\mathcal{D}_X^m/\mathcal{D}_X^m P), \mathcal{O}_X^t).$$

Let $\theta_0, \theta_1, R \in \mathbb{R}$, with $\theta_0 < \theta_1$ and R > 0. We denote the open set

$$\{z \in \mathbb{C}; \theta_0 < \arg z < \theta_1, 0 < |z| < R\},\$$

by $S(\theta_0, \theta_1, R)$ and call it open sector of amplitude $\theta_1 - \theta_0$ and radius R. Let $l \in \mathbb{N}$. By choosing a branch, we consider $z^{1/l}$ as a holomorphic function on subsets of open sectors of amplitude smaller than 2π .

The next goal is to calculate the ind-sheaf S^t . As an essential step we recall the following classical result that gives the characterization of the holomorphic solutions of the matrix of differential operators $z^N \partial_z I_m + A(z)$ in some open sectors.

Theorem 2.2 (see [12]). Let us denote by P the matrix of differential operators $z^N \partial_z I_m + A(z)$. There exist $l \in \mathbb{N}$, a diagonal matrix $A(z) \in \mathbb{M}_m(z^{-1/l}\mathbb{C}[z^{-1/l}])$ and, for any real number θ , there exist R > 0, $\theta_1 > \theta > \theta_0$ and $F_{\theta} \in \mathrm{GL}_m(\mathcal{O}_X(S(\theta_0, \theta_1, R)) \cap C^0(\overline{S(\theta_0, \theta_1, R)} \setminus \{0\}))$, such that the m-columns of the matrix $F_{\theta}(z) \exp(-A(z))$ are \mathbb{C} -linearly independent holomorphic solutions of the system Pu = 0. Moreover, for each

⁽¹⁾ For a commutative ring R we denote by $M_m(R)$ the ring of $m \times m$ matrices and by $GL_m(R)$ the group of invertible $m \times m$ matrices.

 θ there exist constants C, M > 0 so that F_{θ} has the estimate

(2.2)
$$C^{-1}|z|^M < |F_{\theta}(z)| < C|z|^{-M}$$
, for any $z \in S(\theta_0, \theta_1, R)$.

If there is no risk of confusion we shall write F(z) instead of F_{θ} .

DEFINITION 2.3. We call the matrix $F(z)\exp(-A(z))$, given in Theorem 2.2, a fundamental solution of P on $S(\theta_0, \theta_1, R)$.

Let us point out that Theorem 2.2 gives a characterization of the holomorphic solutions of the systems of differential operators of the form $z^N \partial_z I_m + A(z)$, not necessarily irregular. However, it follows by Theorem 5.1 of [5] that the matrix Λ given by Theorem 2.2 will be non-zero if and only if P is irregular.

Let $l\in\mathbb{N}$ and $\varLambda(z)$ be the diagonal matrix given in Theorem 2.2 for the operator (2.1). For each $1\leq j\leq m$, let $\varLambda_j(z)=\sum\limits_{k=1}^{n_j}a_k^jz^{-k/l}$ be the (j,j) entry of $\varLambda(z)$, with $n_j\in\mathbb{N},\,a_1^j,...,a_{n_j}^j\in\mathbb{C}$.

COROLLARY 2.4. Let $V \in \operatorname{Op}_{X_{sa}}^c$ and let us suppose P has a fundamental solution $F(z) \exp(-\Lambda(z))$ on V. Then, $\Gamma(V; \mathcal{S}^t) \simeq \mathbb{C}^{n(V)}$, where n(V) is the cardinality of the set:

$$J(V) := \{ j \in \{1, ..., m\}; \exp(-\Lambda_j(z)) |_V \in \mathcal{O}_X^t(V) \}.$$

PROOF. By hypothesis, $\Gamma(V; S)$ is the m-dimensional \mathbb{C} -vector space generated by the m-columns of the matrix $F(z) \exp(-\Lambda(z))$. Let k be the dimension of the \mathbb{C} -vector space $\Gamma(V; S^t)$. Clearly $n(V) \leq k$. Let us prove that k < n(V).

Let $G_1,...,G_k$ be a \mathbb{C} -basis of $\Gamma(V;\mathcal{S}^t)$. Clearly, for h=1,...,k, there exists $C_h\in\mathbb{C}^m$ such that $G_h=F(z)\exp{(-\varLambda(z))}C_h$. In particular, the j-th coordinate of $F^{-1}G_h$ is a complex multiple of $\exp{(-\varLambda_j)}$. Further, since F^{-1} is a matrix of tempered holomorphic functions, $F^{-1}G_1,...,F^{-1}G_k$ are \mathbb{C} -linearly independent vectors in $\mathcal{O}_X^t(V)^m$. It follows that there exists $\{j_1,...,j_k\}\subset\{1,...,m\}$ such that $\exp{(-\varLambda_{j_1}(z))},...,\exp{(-\varLambda_{j_k}(z))}\in\mathcal{O}_X^t(V)$. The conclusion follows.

LEMMA 2.5. Let S be an open sector of amplitude smaller than 2π , $p \in z^{-1}\mathbb{C}[z^{-1}]$, $l \in \mathbb{N}$ and $V \in \operatorname{Op}_{X_{sa}}^c$, with $V \subset S$ and $0 \in \partial V$. Then $\exp(p(z^{1/l})) \in \mathcal{O}_X^t(V)$ if and only if there exists A > 0 such that $\operatorname{Re}(p(z^{1/l})) < A$, for all $z \in V$.

Proof. Let $\theta_0, \theta_1, R \in \mathbb{R}$ such that $0 < \theta_1 - \theta_0 < 2\pi$ $S=S(heta_0, heta_1,R)$, and let us denote by U the open sector $S\Big(rac{ heta_0}{t},rac{ heta_1}{t},R^{1/l}\Big)$. Let $f: X \to X$ be the holomorphic function defined by $f(z) = z^l$. Since $\theta_1-\theta_0<2\pi$, we may easily check that $f|_{\overline{\eta}}$ is an injective map. Moreover, f(U) = S and $f|_U: U \to S$ is bijective. Set $V' = f^{-1}(V) \cap U$ and let h denotes the holomorphic function defined for each $z \in S$ by $h(z) = \exp(p(z^{1/l}))$. By Theorem 1.3, we have $h \circ f \in \mathcal{O}_X^t(V')$ if and only if $h \in \mathcal{O}_{V}^{t}(V)$. On the other hand, one has $\exp(p)|_{V'} = h \circ f|_{V'}$ and, by Proposition 1.4, $h \circ f \in \mathcal{O}_{Y}^{t}(V')$ if and only if there exists A > 0 such that $\operatorname{Re}(p(z)) < A$, for all $z \in V'$. Combining these two facts, we conclude that $\exp(p(z^{1/l})) \in \mathcal{O}_X^t(V)$ if and only if there exists A > 0 such that $\operatorname{Re}(p(z^{1/l})) < A$, for all $z \in V$, as desired. q.e.d.

PROPOSITION 2.6. With the notation above, there exist an open sector S, with amplitude smaller than 2π and radius R > 0, and a non-empty subset I of $\{1, ..., m\}$ such that, for each $j \in I$ and each open subanalytic subset $V \subset S$, the conditions below are equivalent:

- (i) there exists A > 0 such that $Re(-\Lambda_i(z)) < A$ for all $z \in V$,
- (ii) there exists $0 < \delta < R$ such that $V \subset \{z \in S; |z| > \delta\}$.

Moreover, for each $j \in \{1, ..., m\} \setminus I$, there exists A > 0 such that, for every $z \in S$, Re $(-\Lambda_j(z)) < A$.

PROOF. For each j=1,...,m, if $z=\rho\exp{(i\theta)},$ one has:

$$\operatorname{Re}(-arLambda_{j}(z)) = \sum_{k=1}^{n_{j}} lpha_{k}^{j}
ho^{-k/l} \cos{(\phi_{k}^{j} - k/l heta)},$$

where $\alpha_k^j = |\alpha_k^j|$ and $\phi_k^j = \arg(-\alpha_k^j)$, for every $k = 1, ..., n_j$.

Since $\Lambda \neq 0$, we may assume from the beginning that $\alpha_{n_1}^1 \neq 0$. For each j=1,...,m and $\theta \in \mathbb{R}$, set $c_j(\theta)=\cos(\phi_{n_j}^j-n_j/l\theta)$. Pick $\theta' \in \mathbb{R}$ such that $c_j(\theta')\neq 0$, for j=1,...,m, and $c_1(\theta')>0$. By continuity, these conditions hold in a neighborhood $[\theta_0,\theta_1]$ of θ' . Moreover, we may assume that one has $0<\theta_1-\theta_0<2\pi$.

Let us set:

$$\mathbf{J} := \{ j \in \{1,...,m\}; c_j(\theta) < 0, \ \forall \theta \in [\theta_0,\theta_1] \} \cup \{ j \in \{1,...,m\}; \varLambda_j = 0 \}.$$

Let $j \in J$, with $\Lambda_j(z) \neq 0$, and choose $C_j > 0$ such that $c_j(\theta) \leq -C_j$, for all $\theta \in [\theta_0, \theta_1]$. We may assume $\alpha_{n_i}^j \neq 0$. Then, for each $\theta \in [\theta_0, \theta_1]$ and $\rho > 0$,

one has:

$$egin{aligned} \operatorname{Re}(&-arLambda_{j}(
ho \exp{(i heta)})) = \ &=
ho^{-n_{j}/l} \Bigg[\sum_{k=1}^{n_{j}-1} lpha_{k}^{j}
ho^{(n_{j}-k)/l} \cos{(\phi_{k}^{j}-k/l heta)} + lpha_{n_{j}}^{j} \cos{(\phi_{n_{j}}^{j}-n_{j}/l heta)} \Bigg] \leq \ &\leq
ho^{-n_{j}/l} \Bigg[\sum_{k=1}^{n_{j}-1} lpha_{k}^{j}
ho^{(n_{j}-k)/l} - lpha_{n_{j}}^{j} C_{j} \Bigg], \end{aligned}$$

and

$$\lim_{\rho \to 0^+} \rho^{-n_j/l} \left[\sum_{k=1}^{n_j-1} \alpha_k^j \rho^{(n_j-k)/l} - \alpha_{n_j}^j C_j \right] = - \infty.$$

Hence, for each $j \in J$, there exists $R_j > 0$ such that $\text{Re}(-\varLambda_j(\rho \exp{(i\theta)})) \leq 0$, for every $0 < \rho < R_j$ and $\theta_0 \leq \theta \leq \theta_1$. Therefore, setting $R = \min\{R_j; j \in J\}$, one gets that $\text{Re}(-\varLambda_j(z)) < A$, for every A > 0, $z \in S(\theta_0, \theta_1, R)$ and $j \in J$.

Let us now set

$$I := \{ j \in \{1, ..., m\}; c_j(\theta) > 0, \forall \theta \in [\theta_0, \theta_1], \Lambda_j(z) \neq 0 \}.$$

Let $j \in I$ and $C_j > 0$ such that $c_j(\theta) > C_j$, for all $\theta \in [\theta_0, \theta_1]$. We may assume $\alpha_{n_j}^j \neq 0$. Let V be an open subanalytic subset of the sector $S(\theta_0, \theta_1, R)$ and suppose that there exists A > 0 such that $\text{Re}(-A_j(z)) < A$, for every $z \in V$, and that, for each $0 < \delta < R$, there exists $z_\delta \in V$ with $|z_\delta| \leq \delta$. For each $0 < \delta < R$, let us denote: $\rho_\delta = |z_\delta|$ and $\theta_\delta = \arg(z_\delta)$. The sequence $\{\rho_\delta\}_\delta$ converges to 0 and one has:

$$\begin{split} &\lim_{\delta \to 0^+} \operatorname{Re}(-\varLambda_j(\rho_\delta \exp{(i\theta_\delta)})) = \\ = &\lim_{\delta \to 0^+} \rho_\delta^{-n_j/l} \Bigg[\sum_{k=1}^{n_j-1} \alpha_k^j \rho_\delta^{(n_j-k)/l} \cos{(\phi_k^j - k/l\theta_\delta)} + \alpha_{n_j}^j \cos{(\phi_{n_j}^j - n_j/l\theta_\delta)} \Bigg] \geq \\ &\geq \lim_{\delta \to 0^+} \rho_\delta^{-n_j/l} \Bigg[-\sum_{k=1}^{n_j-1} \alpha_k^j \rho_\delta^{(n_j-k)/l} + \alpha_{n_j}^j C_j \Bigg] = +\infty, \end{split}$$

which is a contradiction. Conversely, if V is an open subanalytic subset of the set $\{z \in S(\theta_0, \theta_1, R); |z| > \delta\}$, for some $0 < \delta < R$, then V is contained on the compact set $\{z \in \mathbb{C}; \theta_0 \leq \arg z \leq \theta_1, \delta \leq |z| \leq R\}$, and $\mathrm{Re}(-\varLambda_j(z))$ is obviously bounded on V. We conclude that I is the desired subset of $\{1, ..., m\}$, with $\{1, ..., m\}\setminus I = J$.

We shall now describe the ind-sheaf of temperate holomorphic solutions of the differential system Pu=0 in the open sector given by Proposition 2.6, where P is the operator (2.1).

THEOREM 2.7. Let \mathcal{M} be the \mathcal{D}_X -module $\mathcal{D}_X^m/\mathcal{D}_X^m P$, where P is the matrix of differential operators (2.1). If \mathcal{M} is irregular, then there exist n > 0 and an open sector S such that:

$$(2.3) \qquad \qquad \text{``} \lim_{R \supset \delta > 0} \text{``}(\mathbb{C}^n_{S_\delta} \oplus \mathbb{C}^{m-n}_S) \xrightarrow{\sim} \mathcal{I}hom_{\beta_X \mathcal{D}_X}(\beta_X \mathcal{M}, \mathcal{O}^t_X)_S,$$

where $S_{\delta} = \{z \in S; |z| > \delta\}$, for each $0 < \delta < R$.

PROOF. Let $S(\theta_0', \theta_1', R')$ and I be, respectively, the open sector and the subset of $\{1, ..., m\}$ given by Proposition 2.6 and let us choose $\theta_0, \theta_1, R \in \mathbb{R}$, with $\theta_0' < \theta_0 < \theta_1 < \theta_1'$ and R > 0, such that the matrix of differential operators P admits a fundamental solution $F(z) \exp(-A(z))$ on the open sector $S(\theta_0, \theta_1, R)$. Let us denote $S = S(\theta_0, \theta_1, R)$ and let n be the cardinality of the set I. Remark that $I \neq \emptyset$ and so, n > 0.

Let V be a connected subanalytic open subset of S, relatively compact in X, with $0 \in \partial V$. By Lemma 2.5, for each j=1,...,m, one has $\exp(-\varLambda_j(z)) \in \mathcal{O}_X^t(V)$ if and only if there exists A>0 such that $\operatorname{Re}(-\varLambda_j(z)) < A$ for each $z \in V$. Thus, by Proposition 2.6, $\exp(-\varLambda_j(z)) \in \mathcal{O}_X^t(V)$, for all $j \in \{1,...,m\} \setminus I$, and, for $j \in I$ one has $\exp(-\varLambda_j(z)) \in \mathcal{O}_X^t(V)$ if and only if $V \subset S_\delta$, for some $0 < \delta < R$. Since $0 \in \partial V$, it follows that $V \not\subseteq S_\delta$, for all $0 < \delta < R$ and, hence, $\exp(-\varLambda_j(z)) \notin \mathcal{O}_X^t(V)$, for all $j \in I$.

Therefore, by Corollary 2.4, given a connected subanalytic open subset V of S, relatively compact in X, either $V \subset S_{\delta}$, for some $0 < \delta < R$, and in this case $\Gamma(V; \mathcal{S}^t) \simeq \mathbb{C}^m$, or else $\Gamma(V; \mathcal{S}^t) \simeq \mathbb{C}^{m-n}$. By Theorem 1.2, we get the desired isomorphism $(^2)$.

Finally, we may conclude the irregularity of \mathcal{S}^t arguing by contradiction. Let S (resp. n) be the open sector (resp. the positive integer) given by Theorem 2.7. Let us suppose that \mathcal{S}^t is regular at p=(0;0). Then, there exist an open neighborhood U of 0, a small and filtrant category L and a functor $G:L\to D^{[a,b]}(\mathrm{Mod}^c(\mathbb{C}_X)),\ l\mapsto G_l$, such that $J_X(\mathcal{S}^t)\simeq \text{``lim}\ "G_l$ and $SS(G_l)\cap \pi^{-1}(U)\subset T^*_{\{0\}}X\cup T^*_XX$, for all $l\in L$. We may assume from the

⁽²⁾ Notice that, for $F \in \text{Mod}(\mathbf{k}_{X_{sa}})$, one has $F_S := i_{S!}i_S^{-1}F$, where $i_S : S_{X_{sa}} \to X_{sa}$ denotes the natural embedding (see [7]).

beginning that U is an open ball with center at the origin and that $S \subset U$. Since $0 \notin S$, we get:

$$SS(G_l) \cap \pi^{-1}(S) \subset T_X^*X, \ \forall l.$$

Then, for each l and $k \in \mathbb{Z}$, $H^k(G_l)_S$ is a constant sheaf, since S is contractible. In particular, we may find $M_l \in D^b(\text{Mod}(\mathbb{C}))$ such that $(G_l)_S \simeq (M_l)_S$, for each l. Moreover, one has:

$$\lim_{R \to \delta > 0} {}^{n}\mathbb{C}^{n}_{S_{\delta}} \oplus \mathbb{C}^{m-n}_{S} \simeq \lim_{l} {}^{n}H^{0}(M_{l})_{S}.$$

Let V be a connected subanalytic open subset of S_{ε} , for some $R > \varepsilon > 0$, and assume V is contractible. Then:

$$\mathbb{C}^m \simeq \text{``} \lim_{R \supset \delta > 0} \text{``} \Gamma(V; \mathbb{C}^n_{S_\delta} \oplus \mathbb{C}^{m-n}_S) \simeq \lim_{\overrightarrow{l}} \Gamma(V; H^0(M_l)_S) \simeq \lim_{\overrightarrow{l}} H^0(M_l).$$

On the other hand:

$$\mathbb{C}^{m-n} \simeq ``\lim_{R \to \delta > 0} "\Gamma(S; \mathbb{C}^n_{S_\delta} \oplus \mathbb{C}^{m-n}_S) \simeq \lim_{\stackrel{\longrightarrow}{l}} \Gamma(S; H^0(M_l)_S) \simeq \lim_{\stackrel{\longrightarrow}{l}} H^0(M_l).$$

This entails that $\mathbb{C}^m \simeq \mathbb{C}^{m-n}$ and hence, n=0, which is a contradiction.

Remark 2.8. Let us consider the irregular holonomic \mathcal{D}_X -module

$$\mathcal{M} = \mathcal{D}_X/\mathcal{D}_X(z^2\partial_z + 1).$$

In this case, $\exp(1/z)$ is a fundamental solution of the differential operator $z^2\partial_z + 1$ in $X\setminus\{0\}$. Arguing as in the proof of Proposition 2.6, we find R>0 with the following property: given an open subanalytic subset V of the sector $S=S(0,\pi/4,R)$, then there exists A>0 such that $\mathrm{Re}(-1/z)< A$, for every $z\in V$, if and only if there exists $0<\delta< R$ such that $V\subset\{z\in S;|z|>\delta\}$. Moreover, by Proposition 2.7, one has the isomorphism below:

$$"\lim_{\stackrel{\longrightarrow}{R\supset\delta}>0}"\mathbb{C}_{S_\delta}\stackrel{\sim}{\to} \mathcal{I}hom_{eta_X\mathcal{D}_X}(eta_X\mathcal{M},\mathcal{O}_X^t)_S.$$

On the other hand, M. Kashiwara and P. Schapira proved in [8] the following isomorphism on X,

$$"\lim_{\stackrel{\longrightarrow}{\varepsilon} \to 0} "\mathbb{C}_{U_{arepsilon}} \sim \mathcal{I}hom_{eta_{X}\mathcal{D}_{X}}(eta_{X}\mathcal{M},\mathcal{O}_{X}^{t}),$$

where $U_{\varepsilon} = X \setminus \overline{B_{\varepsilon}(\varepsilon, 0)}$, and $B_{\varepsilon}(\varepsilon, 0)$ denotes the open ball with center at $(\varepsilon, 0)$ and radius ε , for every $\varepsilon > 0$.

Let us check that

It is enough to prove that, for every $0<\delta< R$, there exists $\varepsilon>0$ such that $S_\delta\subset U_\varepsilon\cap S$ and that, for every $\varepsilon>0$, there exists $0<\delta< R$ such that $U_\varepsilon\cap S\subset S_\delta$. In fact, for each $0<\delta< R$, if $x+iy\in S_\delta$, then $x^2+y^2>\delta^2$ and x>y>0. It follows that $2x^2>\delta^2$ and hence, $x^2+y^2>x^2>x(\delta/2)$, this is, $(x-\delta/4)^2+y^2>(\delta/4)^2$. Thus, $S_\delta\subset U_{\delta/4}\cap S$. Conversely, given $\varepsilon>0$ and $x+iy\in U_\varepsilon\cap S$, we have $x^2+y^2>2x\varepsilon$ and x>y>0. This gives $x>\varepsilon$ and so, $x^2+y^2>\varepsilon^2$. Therefore, $U_\varepsilon\cap S\subset S_\varepsilon$.

REFERENCES

- [1] L. Prelli, Sheaves on subanalytic sites, arXiv:math.AG/0505498 (2005)
- [2] G. MORANDO, An existence theorem for tempered holomorphic solutions of Dmodules on complex curves, arXiv:math.AG/0605507 (2006)
- [3] N. Honda, On the solvability of ordinary differential equations in the space of distributions, Jour. Fac. Sci. Univ. Tokyo IA, Vol. 39, no. 2 (1992), pp. 207–232.
- [4] M. Kashiwara, Algebraic study of systems of partial differential equations, (Thesis, Tokyo 1970) translated and published in Memoires Soc. Math. Fr. 63, chapter 4 (1995).
- [5] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical monographs, Vol. 217 (2000).
- [6] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ., Vol. 20, no. 2 (1984), pp. 319–365.
- [7] M. Kashiwara P. Schapira, *Ind-sheaves*, Astérisque, Soc. Math. France, 271 (2001).
- [8] M. Kashiwara P. Schapira, Microlocal study of Ind-sheaves I: microsupport and regularity, Astérisque, Soc. Math. France, 284 (2003), pp. 143–164.
- [9] M. Kashiwara P. Schapira, Sheaves on manifolds, Grundlehren der Math. Wiss., Springer Verlag, 292 (1990).
- [10] M. KASHIWARA T. KAWAI, On holonomic systems of microdifferential equations III - Systems with regular singularities, Publications of the research institute for mathematical sciences, Kyoto University, Vol. 17, no. 3 (1981), pp. 813-979.
- [11] S. Lojasiewicz, Sur le problème de la division, Studia Mathematica, 18 (1959), pp. 87–136.
- [12] W. WASOW, Asymptotic expansions of ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney (1965).

Manoscritto pervenuto in redazione il 20 febbraio 2006.