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Temperate Holomorphic Solutions and Regularity of
Holonomic D-modules on Curves.

ANA RI1TA MARTINS (*)

ABSTRACT - In [8], Kashiwara and Schapira introduced the notion of regularity for
ind-sheaves and conjectured that a holonomic D-module on a complex manifold
is regular if and only if its complex of temperate holomorphic solutions is regular.
Our aim is to prove this conjecture in the one-dimensional case.

Introduction.

In [8], the authors introduced the notions of microsupport and reg-
ularity for ind-sheaves. Let X be a complex manifold, M a coherent Dx-
module and consider its complex of temperate holomorphic solutions

Sol' (M) := RThomy,p,(Bx M, O%).

It is proved in [8] that the microsupport of Sol'(M) coincides with the
characteristic variety of M. Moreover, if M is regular holonomie, then
Sol'(M) is regular. In fact, Kashiwara and Schapira made the following
conjecture:

(K-S)-cONJECTURE. Let M be a holonomic Dx-module. Then M is
regular holonomic if and only if RThomg,p,(fx M, (95() s regqular.

In this paper, we prove, in dimension one, that the regularity of Sol’(M)
implies the regularity of the holonomic Dy-module M. More precisely, we
show that Sol!(M) is irregular when the holonomic Dy-module M has an
irregular singularity. This proof relies in several steps. First we reduce to
the case M = DY /Dy P, where P is a matrix of differential operators of the
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form 2V o.1,, + A(z), with m, N € N, I,,, the identity matrix of order m and
A a m x m matrix of holomorphic functions on a neighborhood of the
origin. Then we show that it is enough to prove the irregularity of
St := H(Solt(M)) and we give a characterization of &' in a sector. From
this characterization we easily conclude a contradiction by assuming the
regularity of S’ at (0; 0), which completes the desired proof.

The contents of this paper are two sections as follows.

In Section 1, we start with a quick review on sheaves, ind-sheaves,
microsupport and regularity for ind-sheaves and we recall the results on
the microsupport and regularity of Sol'(M), proved in [8].

Section 2 is dedicated to the proof of the irregularity of Soll(M),
when M is an irregular holonomic Dy-module on an open neighborhood
X of 0in C.

Acknowledgments. We thank P. Schapira who suggested us to solve
the (K-S)-conjecture in dimension one, using the tools of [12], and made
useful comments during the preparation of this manuscript. Finally, we
thank T. Monteiro Fernandes for many useful advises.

1. Notations and review.
We will follow the notations in [8].

SHEAVES. Let X be a real analytic n-dimensional manifold. We denote
by 7 : T"X — X the cotangent bundle to X. We identify X with the zero
section of T*X and we denote by 7*X the set T*X\X.

Let k be a field. We denote by Mod(kyx) the abelian category of sheaves
of k-vector spaces on X and by D’(ky) its bounded derived category. For
a,b € R, a < b (resp. k € 7), we denote by D“?l(ky) (resp. D>*(ky)) the
full additive subcategory of D’(ky) consisting of objects F satisfying
HI(F) =0, for any j¢ [a, b] (resp. j < k).

We denote by R—C(ky) the abelian category of R-constructible sheaves
of k-vector spaces on X and by D?{_C(kx) the full subcategory of D(ky)
consisting of objects with R-constructible cohomology.

For an object ' € D°(ky), we denote by SS(F) the microsupport of F, a
closed R*-conic involutive subset of T*X. We refer to [9] for details.

IND-SHEAVES ON REAL MANIFOLDS. Let X be a real analytic manifold. We
denote by I(kx) the abelian category of ind-sheaves on X, that is, the ca-
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tegory of ind-objects of the category Mod‘(kx) of sheaves with compact
support on X (see [7]).
Recall the natural faithful exact functor

Ix : MOd(kx) — I(kx);Fl—)“ llln ”FU.

U open
We usually don’t write this functor and identify Mod(kx) with a full abelian
subcategory of I(ky) and D°(ky) with a full triangulated subcategory of
D'(I(kx)).
The category I(kx) admits an internal hom denoted by Zhom and this
functor admits a left adjoint, denoted by ®. If F ~* hm "F; and
G ~ “lim”Gj, then:

' Thom(G, F) ~ lim “lim "Hom(G;, F)),
J i
G ®F ~ “liln ”“hln ”(Gj ®FZ)

J i
The functor 1x admits a left adjoint

ax : I(kx) — Mod(kx); F = “lim”F; — lim F;.

This last functor also admits a left adjoint fy : Mod(kx) — I(kx). Both
functors ax and Sy are exact. We refer to [7] for the description of fy.

Let X be a real analytic manifold. We denote by R—C°(ky) the full
abelian subcategory of R—C(kyx) consisting of R-constructible sheaves
with compact support. We denote by IR—c(ky) the -category
Ind(R—C°(ky)) and by DIJR (I(kx)) the full subcategory of D(I(kx))
consisting of objects with cohomology in IR—c(ky).

THEOREM 1.1 ([7]).  The natural functor D*(IR—c(kx)) — D%, (I(kx))
1s an equivalence of categories.

Recall that there is an alternative construction of IR —c(ky), using Gro-
thendieck topologies. Denote by Opy, the category of open subanalytic
subsets of X. We may endow this category with a Grothendieck topology
by deciding that a family {U;}, in Opy, is a covering of U € Opy,, if for any
compact subset K of X, there exists a finite subfamily which covers U N K.
One denotes by X, the site defined by this topology and by Mod(ky,,) the
category of sheaves on Xy, (see [1] and [7]). We denote by Op_ the sub-
category of Opy_, consisting of relatively compact open subanalytic subsets
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of X and for U € Opy,, we denote by Uyx,, the category Opy N U with the
topology induced by X,.
Let p : X — X, be the natural morphism of sites. We have functors

P
Mod(kx) = Mod(ky,,),
o1

and we still denote by p, the restriction of p, to R—C(kx) and to R—C°(ky).
We may extend the functor p, : R—C‘(kx) — Mod(ky,,) to IR—c(ky),
by setting:
A: IR—ctky) — Modky,,)
“Im”F; +— limpF;.

For F € IR—c(ky), an alternative definition of A(F') is given by the formula
AMF)U) = Homg gy by, F).

THEOREM 1.2 ([7]). The functor 1 is an equivalence of abelian cate-
gories.

Most of the time, thanks to A, we identify IR—c(kx) with Mod(kx,, ).

TEMPERED DISTRIBUTIONS. Let X be a real analytic manifold. Denote by
Dby the sheaf of distributions on X. For each open subanalytic subset
U c X, we denote by Db&(U ) the space of tempered distributions on U,
defined by the exact sequence

0 — I'y\y(X; Dbx) — I'(X; Dbx) — Dby (U) — 0.

It is proved in [7] that U — Db&(U ) is a sheaf on the subanalytic site
Xsq, hence defines an ind-sheaf. We call Dbfx the ind-sheaf of tempered
distributions. This ind-sheaf is well-defined in the category Mod(8xDx),
where Dy denotes the sheaf of analytic finite-order differential operators.

TEMPERED HOLOMORPHIC FUNCTIONS. Let X be a complex analytic
manifold. One defines the ind-sheaf of tempered holomorphic functions as:

O& = RI”&OWL{;’D; (BO%, Dbéf R)’

where X denotes the complex conjugate manifold, X R the underlying real
analytic manifold, identified with the diagonal of X x X, and Dy the_sheaf of
rings of holomorphic differential operators of finite order over X. O% is
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actually an object of Db(ﬁXDX) and it is not concentrated in degree 0 if dim
X > 1. When X is a complex analytic curve, O% is concentrated in degree 0.
Moreover, Oy is p,-acyclic and Ofx is a sub-ind-sheaf of p, Oy.

We end this section by recalling two results of G. Morando, which will
be useful in our proof.

THEOREM 1.3 ([2]). Let X be an open subset of C and f € Oc(X). Let
U € Opy,, such that flg is an injective map. Let h € Oc(f(U)). Then
hof € (’)éf(U) if and only if h € OL(f(D)).

PROPOSITION 1.4 ([2]). Let p € 2z 'C[z""]1 and U € Opf.  with 0 € dU.
The conditions below are equivalent.

(i) exp(pk) € OL).
(ii) There exists A > 0 such that Re(p(z)) < A4, forall z € U.

MICROSUPPORT AND REGULARITY FOR IND-SHEAVES. We refer to [8] for
the equivalent definitions for the microsupport SS(F) of an object
F € D’(I(ky)). We shall only recall the following useful properties of
this closed conic subset of 7"X.

PROPOSITION 1.5. (1) For F € D'(Itky)), one has SS(F)NT%X =
= supp(£).
(i) Let F € D’(ky). Then SS(xF) = SS(F).
(ii) Let F € D*(I(kyx)). Then SS(ox(F)) C SS(F).
(iii) Let 'y — Fo — F3 BEN be a distinguished triangle in D*(I(kx)).
Then SS(F;) C SS(F;) USS(Fy), for {1,j,k} = {1,2,3}.

Let J denotes the functor J : D*(I(ky)) — (D*(Mod‘(kx)))" (where
(D*(Mod(kx)))" denotes the category of functors from D’(Mod‘(kx))* to
Set) defined by:

JF)G) = Hompp (G, F),

for every F € D’(I(kx)) and G € D*(Mod‘(kx)).

DEFINITION 1.6 ([8]). LetF € D°(I(ky)), A C T*X bealocally closed conic
subset and p € T*X. We say that F' is reqular along A at p if there exists
F’ isomorphic to £ in a neighborhood of z(p), an open neighborhood U of p
with AN U closed in U, a small and filtrant category I and a functor
I — D*¥(ky); i+ F; such that J(F') ~ “lim”J(F;) and SS(F,)NU C A.

iel
Otherwise, we say that F' is irregular along A at p.
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We say that F' is regular at p if F' is regular along SS(F) at p. If F' is
regular at each p € SS(F), we say that F' is regular.

PropoSITION 1.7 ([8]). (i) Let F' € D*(I(kx)). Then F is regular along
any locally closed set A at each p¢ SS(F).

(ii) Let F1 — Fy — F3 N be a distinguished triangle in D*(I(kx)). If
F; and F). are vegular along A4, so is Fy, for 1,5,k € {1,2,3}, 1 # k.

(iii) Let F € D'(kx). Then 1xF is vegular.

TEMPERATE HOLOMORPHIC SOLUTIONS OF D-MODULES. Let X be a com-
plex manifold and let M be a coherent Dx-module. Set

Sol(M) = Rp,RHomp, (M, Ox),

Sol' (M) = RThomyg, p,(Bx M, OF).
The equality:
1.1 SS(Sol'(M)) = Char(M),

was obtained by M. Kashiwara and P. Schapira in [8], where these authors
also proved that the natural morphism Sol'(M) — Sol(M) is an iso-
morphism, when M is a regular holonomic Dy-module. This gives the “only
if” part of the (K-S)-Conjecture.

2. Proof of the (K-S)-Conjecture in dimension one.

In this section, we consider C endowed with the holomorphic coordinate
z and X will denote an open neighborhood of 0 in C. We shall prove that, for
every irregular holonomic Dy-module M, Sol'(M) is irregular, using a
similar argument as in the Example of [8].

We shall first reduce the proof to the case where M = Dx/DxP, for
some P € Dy.

Let M be an irregular holonomic Dy-module and let us denote by
Char(M) its characteristic variety. Since M is holonomic it is locally gene-
rated by one element and we may assume M is of the form Dy /Z, for some
coherent left ideal Z of Dy. We may also assume that, locally at 0 € C,
Char(M) Cc T3 X U T”{‘O}X. Moreover, we may find P € Z such that the
kernel of the surjective morphism

Dx/DXP - M — 0,
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is isomorphic to a regular holonomic Dx-module A (see, for example,
Chapter VI of [10]). Therefore, we have an exact sequence

0— N — Dx/DxP — M — 0,
and we get the distinguished triangle

Solt(M) — Sol'(Dx /DxP) — Solt(N) 5 .

Since Sol'(N) is regular, by Proposition 1.7, Sol!(M) will be regular if and
only if Sol'(Dy /Dx P) is. Therefore, we may assume from the beginning that
M = Dx/DxP, for some P € Dy, having an irregular singularity at the
origin.

Let us now recall the following result, due to G. Morando:

THEOREM 2.1 ([2]). Let M be a holonomic Dx-module. The natural
morphism
H(Sol'(M)) — H (Sol(M),

18 an 1somorphism.

The Theorem above together with the results in [4] entails that:
H'(Sol'(M)) ~ H'(Sol(M)) ~ CT,,

for some m € N. Then H'(Sol'(M)) is regular and SS(H'(Sol{(M))) =
— T, X.
As in [8], let us set for short

8" == HO(Sol' (M) = Thomy, p, (Bx M, Of),
S 1= H'(Sol(M)) = p, Homn, (M, Ox) = ker(p,Ox > p,Ox).

Remark that, since dimX = 1, one has a monomorphism S! — S. Moreover,
we have the following distinguished triangle:

St — Sol(M) — HYSoll (M) — 1] = .
Therefore, one has

SS(8") € Char(M) U T}y, X © T4X U T}y, X,

and S will be irregular if and only if Solt(M) is.
The problem is then reduced to prove the irregularity of S, for an ir-
regular holonomic Dy-module of the form M = Dy /DxP, with P € Dy.
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-1
Moreover, we may assume P is of the form P = zNo" + mZ a(2)0k, for
some N, m € N, k=0

Let U be an open neighborhood of the origin in C. The problem of
finding the solutions of the differential equation Pu =0 in Ox(U) is
equivalent to the one of finding the solutions in Ox(U)™ of a system of
ordinary differential equations defined by a matrix of differential opera-
tors of the form

zNazIm +A(2),

wherem, N € N, I,,, is the identity matrix of order m and A € M,,,(Ox(U))(®).
From now on we denote by P the system

@1 P=2N0.I, + A®),
and we reduce to the case where M = DY /DY P, so that
S ~ p, Homp, (DY /DY P, Ox),
and
S' =~ Thomy 1, (Bx (D /DYEP), O%).
Let 0y, 01, R € R, with 6y < 61 and R > 0. We denote the open set
{z e C;0) < argz < 61,0 < |z| < R},

by S(6y, 01, R) and call it open sector of amplitude 0; — 6y and radius R.

Let [ € N. By choosing a branch, we consider z!// as a holomorphic
function on subsets of open sectors of amplitude smaller than 27.

The next goal is to calculate the ind-sheaf S'. As an essential step we
recall the following classical result that gives the characterization of the
holomorphic solutions of the matrix of differential operators 2N 9.1, + A(z)
in some open sectors.

THEOREM 2.2 (see [12]). Let us denote by P the matrix of differential
operators zNo.I,, +A). There exist 1€ N, a diagonal matric
A®) € M, (" Y'/Clz YY) and, for any real number 0, there exist R > 0,
01 > 0> 0y and Fy € GL,(Ox(S(0p,01,R)) N COS(0y, 01, R)\{0})), such
that the m-columns of the matrix Fy(z)exp(— A()) are C-linearly in-
dependent holomorphic solutions of the system Pu = 0. Moreover, for each

(") For a commutative ring R we denote by M,,(R) the ring of m x m matrices
and by GL,,(R) the group of invertible m x m matrices.
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0 there exist constants C, M > 0 so that Fy has the estimate
22  C'zM < |Fy)| < Clz| ™, foranyze S© o,01,R).

If there is no risk of confusion we shall write F'(z) instead of Fy.

DEFINITION 2.3. We call the matrix F'(z)exp( — A4(z)), given in Theorem
2.2, a fundamental solution of P on S(0y, 601, R).

Let us point out that Theorem 2.2 gives a characterization of the ho-
lomorphic solutions of the systems of differential operators of the form
ZN0.1,, + A(2), not necessarily irregular. However, it follows by Theorem
5.1 of [5] that the matrix A given by Theorem 2.2 will be non-zero if and
only if P is irregular.

Let [ € N and A(z) be the diagonal matrix glven in Theorem 2.2 for the

operator (2.1). For each 1 <j < m, let 4;(2) = Z a’z k/l be the (j,7) entry
of A(z), with n; € N, af, ..., a3, € C.

COROLLARY 2.4. Let V € Op5  and let us suppose P has a funda-
mental solution F(z)exp(— A(z)) on V. Then, I'(V;S") ~ C‘”(V), where
n(V) s the cardinality of the set:

JV) = {j € {1,..m}exp(— 4,(2)], € OL(V)}.

Proor. By hypothesis, I'(V;S) is the m-dimensional C-vector space
generated by the m-columns of the matrix F'(z) exp ( — A(z)). Let k be the
dimension of the C-vector space I'(V; SH. Clearly n(V) < k. Let us prove
that k < n(V).

Let Gy, ...,G;. be a C-basis of I'(V;S"). Clearly, for h =1, ...,k, there
exists C;, € C™ such that Gj, = F(2) exp ( — A(2))Cy,. In particular, the j-th
coordinate of F~1G, is a complex multiple of exp ( — ;). Further, since F1
is a matrix of tempered holomorphic functions, F Gy, ..., F1G}, are C-
linearly independent vectors in (’)&(V)m. It follows that there exists
{71, gk} € {1,...,m} such that exp(— 4;,(2)),...,exp( — 4;,(2)) € (’)&(V).
The conclusion follows. q.e.d.

LEmMA 2.5. Let S be an open sector of amplitude smaller than 2r,
pez1Clz], leN and V € Op%,, with V.CS and 0€dV. Then
exp (p(z'/h) € OL(V) if and only zf there exists A >0 such that
Re(p(z'/h) < A, forallz € V.



44 Ana Rita Martins

Proor. Let 0y,0,,R€ R such that 0<60;—-0y<2r and
S = S0y, 01, R), and let us denote by U the open sectorS(% , % , Rl/l). Let
f:X — X be the holomorphic function defined by f(z)=z2'. Since
01 — 0y < 27, we may easily check that f|; is an injective map. Moreover,
fW) =S8 and f|;: U — S is bijective. Set V' =f"1(V)NU and let &
denotes the holomorphic function defined for each z¢€S by
h(z) = exp (p(zl/ ). By Theorem 1.3, we have hof € (’)&(V’) if and only if
h e O&(V). On the other hand, one has exp (p)|;» = k o f|;» and, by Propo-
sition 1.4, hof € O% (V') if and only if there exists A > 0 such that
Re(p(z)) < A, for all z € V'. Combining these two facts, we conclude that
exp (p(z'/h) € O%(V) if and only if there exists A >0 such that
Re(p(z'/h) < A, for all z € V, as desired. q.e.d.

PROPOSITION 2.6.  With the notation above, there exist an open sector
S, with amplitude smaller than 2n and radius R > 0, and a non-empty
subset I of {1,...,m} such that, for each j € I and each open subanalytic
subset V' C S, the conditions below are equivalent:

() there exists A > 0 such that Re( — 4;(2)) <A forallz € V,
(ii) there exists 0 < 0 < R such that V C {z € S;|z| > J}.

Moreover, for each j € {1,...,m}\I, there exists A > 0 such that, for
every z € S, Re( — 4;()) < A.

Proor. Foreachj=1,...,m,if z = pexp(¢6), one has:

"

Re(— 4i(2) =Y _ op "/ cos (¢], — k/10),
k=1

where ocf,'c = |a§€| and ¢£ =arg(— a;c), for every k =1,...,n;.

Since 4 # 0, we may assume from the beginning that oc,l“ # 0. For each
Jj=1,..,m and 0 € R, set ¢;(0) = cos (#27_ —n;j/10). Pick 6’ € R such that
¢j(0) #0, for j =1,...,m, and ¢;1(¢) > 0. By continuity, these conditions
hold in a neighborhood [0, 01] of . Moreover, we may assume that one has
0<6,— 90 < 27.

Let us set:

J:={e{l,...,m};c;(0) <0, VO € [0p,0:]} U{j € {1,...,m}; 4; = 0}.

Let j € J, with 4;(2) # 0, and choose C; > 0 such that ¢;(0) < —C;, for all
0 € [0y, 01]. We may assume oc7n_7. # 0. Then, for each 0 € [0y, 0] and p > 0,
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one has:

Re( — Ai(pexp i0))) =

w1 . . )
= pll lz o), p" M cos (¢, — k/10) + ), cos (#lj —n;/ l@)] <

k=1
nj
<p n,/Z[de(n, k)l 067 C‘|

and

n;—1
tig [ 1,0 = o
Hence, for each jecJ, there exists R; >0 such that
Re( — 4;(pexp (10))) < 0, for every 0 < p < R;j and 0y < 0 < 0;. Therefore,
setting B = min{R;;j € J}, one gets that Re(— 4;(z)) <A, for every
A>0,2z¢€80y,0,R)andj € J.
Let us now set

I:={j € {1,...m};¢j0) > 0,Y0 € [0y, 011, 4;(z) # 0}.

Letj € Tand C; > 0 such that ¢;(0) > Cj, for all 0 € [0y, 01]. We may assume
ocjn]. # 0. Let V be an open subanalytic subset of the sector S(6y, 61, R) and
suppose that there exists A > 0 such that Re( — 4;(z)) < A, foreveryz € V,
and that, for each 0 < 6 < R, there exists z; € V with |z5] < J. For each
0 < 0 < R, let us denote: p; = |25] and 05 = arg(zs). The sequence {ps} s
converges to 0 and one has:

Jim Re( — 4,(p, exp (i) =

0—0*

= lim p; ’/Z[Zo/ i k)/lcos(qbﬁ;—k/lﬁ(;)—i—% cos(#@j —nj/lg(;)] >

:+OO,

nj—l ) )
> J |- S

"
T 6—0 —

which is a contradiction. Conversely, if V is an open subanalytic subset of
the set {z € S(6y, 61, R); |z| > 0},forsome 0 < 6 < R,then V is contained on
the compact set {z € C;0y < argz < 01,0 < |2| < R}, and Re(— 4;(2)) is
obviously bounded on V. We conclude that I is the desired subset of
{1,...,m}, with {1, ....m}\I = J. q.e.d.
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We shall now describe the ind-sheaf of temperate holomorphic solutions
of the differential system Pu = 0 in the open sector given by Proposition
2.6, where P is the operator (2.1).

THEOREM 2.7. Let M be the Dx-module Dy /D3P, where P is the
matrix of differential operators (2.1). If M is irregular, then there exist
n > 0 and an open sector S such that:

2.3) “lim "(Cg & C¢™) = Thomy,p, (Bx M, Of)s,

R>0>0

where S5 = {z € S;|z| > J}, foreach 0 < J < R.

Proor. Let S(6, 0, R) and I be, respectively, the open sector and the
subset of {1, ..., m} given by Proposition 2.6 and let us choose 6y, 01, R € R,
with 6, < 6y < 0; < 0} and R > 0, such that the matrix of differential opera-
tors P admits a fundamental solution #'(z) exp ( — A(z)) on the open sector
S(6y, 01, R). Let us denote S = S(0y, 01, R) and let n be the cardinality of the
set I. Remark that I # () and so, % > 0.

Let V be a connected subanalytic open subset of S, relatively compact
in X, with 0 € 9V. By Lemma 2.5, for each j=1,...,m, one has
exp (— 4;(2)) € OQ(V) if and only if there exists A >0 such that
Re(—4;(z)) <A for each zeV. Thus, by Proposition 2.6,
exp (— 4;(z)) € OfX(V), for all j e {1,...m}\], and, for j €1 one has
exp (— 4;(2)) € O&(V) if and only if Vc S5 for some 0<d<R.
Since 0 € 9V, it follows that V € S5, for all 0 < < R and, hence,
exp (— 4;(2)) ¢ O%(V), for all j el

Therefore, by Corollary 2.4, given a connected subanalytic open subset
V of S, relatively compact in X, either V C S, for some 0 < 6 < R, and in
this case I'(V;S") ~ C™, or else I'(V;S") ~ C"~", By Theorem 1.2, we get
the desired isomorphism A). q.e.d.

Finally, we may conclude the irregularity of S' arguing by contra-
diction. Let S (resp. ) be the open sector (resp. the positive integer) given
by Theorem 2.7. Let us suppose that S is regular at p = (0;0). Then, there
exist an open neighborhood U of 0, a small and filtrant category L and a
functor G : L — DI“*}(Mod*(Cy)), {+— G, such that Jx(S') ~ “lim "G, and

SSG) N1 U) TTO}X UT%X, for all [ € L. We may assumelfrom the

(*) Notice that, for F € Mod(ky,,), one has Fs := igiig'F, where is : Sx,, — Xsa
denotes the natural embedding (see [7]).
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beginning that U is an open ball with center at the origin and that S C U.
Since 0¢ S, we get:

SS(G) N X(S) C TX, V.

Then, for each ! and k € 7, H*(G))s is a constant sheaf, since S is con-
tractible. In particular, we may find M; € D’(Mod(C)) such that
(Gps ~ (M))g, for each l. Moreover, one has:

@ 1@ ”,\‘:zgzj o ‘Cglfn ~ Hlilp ”HO(MZ)S-
l

R>6>0

Let V be a connected subanalytic open subset of S,, for some R > ¢ > 0,
and assume V is contractible. Then:

C" o~ “Him "F(V; Cf @ C¢™) ~ lim I'(V; H'(M))g) ~ lim H'(M).
1 1

R>0>0

On the other hand:

C"" ~ S im 1S Cg, @ CY ") ~ lim I'(S; H'(M))g) ~ lim H'(M).
1 i

R>0>0

This entails that C"™ ~ C™™" and hence, n = 0, which is a contradiction.

REMARK 2.8. Let us consider the irregular holonomic Dy-module
M= Dx/DX(Zzaz +1).

In this case, exp (1/z) is a fundamental solution of the differential operator
220, + 1in X\ {0}. Arguing as in the proof of Proposition 2.6, we find R > 0
with the following property: given an open subanalytic subset V of the
sector S = S(0,7/4, R), then there exists A > 0 such that Re(—1/z) < A4,
for every ze€V, if and only if there exists 0 <J <R such that
V c {z € 8;J?| > 6}. Moreover, by Proposition 2.7, one has the iso-
morphism below:
¢ hln ”CS(; 5 IhOWL/}XDX(ﬁXM, O&)g
R>0>0

On the other hand, M. Kashiwara and P. Schapira proved in [8] the

following isomorphism on X,

¢ llln ”‘CUENIhOWLﬁXDX (ﬁX./\/l, Og(),

&>0

where U, = X\B, (¢, 0), and B,(¢, 0) denotes the open ball with center at (¢, 0)
and radius ¢, for every ¢ > 0.
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Let us check that

“lim "Cg, ~ “lim” Cyqs.
R>0>0 >0

It is enough to prove that, for every 0 < J < R, there exists ¢ > 0 such
that S; € U, N S and that, for every ¢ > 0, there exists 0 < 6 < R such that
U.NS C Sy. In fact, for each 0 < § < R, if « + iy € Sy, then a2 + y2 > 6
and >y > 0. It follows that 222 > 6% and hence, @2 + 32 > &2 > 2(5/2),
this is, (x — (5/4)2 +9% > (5/4)2. Thus, Ss C Uss NS. Conversely, given
e>0andx + 1y € U,NS, we have 22 + »? > 2xe and x > y > 0. This gives
x > ¢ and so, 2% + 3% > &2. Therefore, U, NS C S..
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