@article{RSMUP_2008__120__73_0, author = {Endimioni, G\'erard}, title = {Automorphisms fixing every {Normal} {Subgroup} of a {Nilpotent-by-abelian} {Group}}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {73--77}, publisher = {Seminario Matematico of the University of Padua}, volume = {120}, year = {2008}, mrnumber = {2492651}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2008__120__73_0/} }
TY - JOUR AU - Endimioni, Gérard TI - Automorphisms fixing every Normal Subgroup of a Nilpotent-by-abelian Group JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2008 SP - 73 EP - 77 VL - 120 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2008__120__73_0/ LA - en ID - RSMUP_2008__120__73_0 ER -
%0 Journal Article %A Endimioni, Gérard %T Automorphisms fixing every Normal Subgroup of a Nilpotent-by-abelian Group %J Rendiconti del Seminario Matematico della Università di Padova %D 2008 %P 73-77 %V 120 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2008__120__73_0/ %G en %F RSMUP_2008__120__73_0
Endimioni, Gérard. Automorphisms fixing every Normal Subgroup of a Nilpotent-by-abelian Group. Rendiconti del Seminario Matematico della Università di Padova, Tome 120 (2008), pp. 73-77. http://archive.numdam.org/item/RSMUP_2008__120__73_0/
[1] Power automorphisms of a group, Math. Z., 107 (1968), pp. 335-356. | EuDML | MR | Zbl
,[2] Pointwise inner automorphisms in a free nilpotent group, Quart. J. Math., 53 (2002), pp. 397-402. | MR | Zbl
,[3] Normal automorphisms of a free metabelian nilpotent group, http://arxiv.org/abs/math.GR/0612347. | Zbl
,[4] On automorphisms fixing normal subgroups of nilpotent groups, Boll. Un. Mat. Ital. B, 7 (1987), pp. 1161-1170. | MR | Zbl
and ,[5] Normal automorphisms of free groups, J. Algebra, 63 (1980), pp. 494-498. | MR | Zbl
,[6] A course in the theory of groups, Springer-Verlag, 1982. | MR | Zbl
,[7] Automorphisms fixing every subnormal subgroup of a finite group, Arch. Math., 64 (1995), pp. 1-4. | MR | Zbl
,[8] Polycyclic groups, Cambridge University Press, 1983. | MR | Zbl
,