@article{RSMUP_2009__121__145_0, author = {Badii, Maurizio}, title = {The thermistor obstacle problem with periodic data}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {145--159}, publisher = {Seminario Matematico of the University of Padua}, volume = {121}, year = {2009}, mrnumber = {2542138}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2009__121__145_0/} }
TY - JOUR AU - Badii, Maurizio TI - The thermistor obstacle problem with periodic data JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2009 SP - 145 EP - 159 VL - 121 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2009__121__145_0/ LA - en ID - RSMUP_2009__121__145_0 ER -
%0 Journal Article %A Badii, Maurizio %T The thermistor obstacle problem with periodic data %J Rendiconti del Seminario Matematico della Università di Padova %D 2009 %P 145-159 %V 121 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2009__121__145_0/ %G en %F RSMUP_2009__121__145_0
Badii, Maurizio. The thermistor obstacle problem with periodic data. Rendiconti del Seminario Matematico della Università di Padova, Tome 121 (2009), pp. 145-159. http://archive.numdam.org/item/RSMUP_2009__121__145_0/
[1] Hölder continuous solutions of an obstacle thermistor problem, Discrete and Continuous Dynamic Systems-Series B, vol. 4, n. 4 (2004), pp. 983-997. | MR | Zbl
- - ,[2] Existence and long time behaviour of olutions to obstacle thermistor equations, Discrete and Continuous Dynamic Systems-Series B, vol. 8, n. 8 (2002), pp. 757-780. | MR | Zbl
- - ,[3] Multiple integrals in the calculus and nonlinear elliptic systems, Annals of Mathematics Studies, Princeton, New Jersey 1983. | Zbl
,[4] Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Paris 1968. | Zbl
,[5] Non-homogeneous boundary value problems and applications, vol. I, Springr Verlag Berlin Heidelburg New York 1972. | MR | Zbl
- ,[6] v2;m (V) estimate to the mixed boundary value problem for second order elliptic equations and its applications in the thermistor problem, Nonlinear Anal., 24 (1995), pp. 9-27. | MR | Zbl
,[7] v2;m (Q)-estimates for parabolic equations and applications, J. Partial Diff. Eqn., 10 (1997), pp. 31-44. | MR | Zbl
,