@article{RSMUP_2009__121__93_0, author = {Fukuma, Yoshiaki}, title = {Sectional invariants of scroll over a smooth projective variety}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {93--119}, publisher = {Seminario Matematico of the University of Padua}, volume = {121}, year = {2009}, mrnumber = {2542136}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2009__121__93_0/} }
TY - JOUR AU - Fukuma, Yoshiaki TI - Sectional invariants of scroll over a smooth projective variety JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2009 SP - 93 EP - 119 VL - 121 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2009__121__93_0/ LA - en ID - RSMUP_2009__121__93_0 ER -
%0 Journal Article %A Fukuma, Yoshiaki %T Sectional invariants of scroll over a smooth projective variety %J Rendiconti del Seminario Matematico della Università di Padova %D 2009 %P 93-119 %V 121 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2009__121__93_0/ %G en %F RSMUP_2009__121__93_0
Fukuma, Yoshiaki. Sectional invariants of scroll over a smooth projective variety. Rendiconti del Seminario Matematico della Università di Padova, Tome 121 (2009), pp. 93-119. http://archive.numdam.org/item/RSMUP_2009__121__93_0/
[1] On vector bundles on 3-folds with sectional genus 1, Trans. Amer. Math. Soc., 324 (1991), pp. 135-147. | MR | Zbl
,[2] Ample vector bundles of small c1-sectional genera, J. Math. Kyoto Univ., 29 (1989), pp. 1-16. | MR | Zbl
,[3] Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, (1990). | MR | Zbl
,[4] On adjoint bundles of ample vector bundles, Complex algebraic varieties (Bayreuth, 1990), pp. 105-112, Lecture Notes in Math., 1507, Springer, Berlin, 1992. | MR | Zbl
,[5] On the sectional geometric genus of quasi-polarized varieties, I, Comm. Alg., 32 (2004), pp. 1069-1100. | MR | Zbl
,[6] Problems on the second sectional invariants of polarized manifolds, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 25 (2004), pp. 55-64. | MR | Zbl
,[7] On the second sectional H-arithmetic genus of polarized manifolds, Math. Z., 250 (2005), pp. 573-597. | MR | Zbl
,[8] On the sectional invariants of polarized manifolds, J. Pure Appl. Alg., 209 (2007), pp. 99-117. | MR | Zbl
,[9] A generalization of curve genus for ample vector bundles, II, Pacific J. Math., 193 (2000), pp. 307-326. | MR | Zbl
- ,[10] Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2 (1984), Springer-Verlag. | MR | Zbl
,[11] Ample vector bundles with small g - q, Comm. Alg., 34 (2006), pp. 2989-3008. | MR | Zbl
- ,[12] Topological methods in algebraic geometry, Grundlehren der mathematischen Wissenschaften, 131 Springer-Verlag, 1966. | MR | Zbl
,[13] Embedded projective varieties of small invariants, in Proceedings of the Week of Algebraic Geometry, Bucharest 1982, Lecture Notes in Math., 1056 (1984), pp. 142-186. | MR | Zbl
,[14] Embedded projective varieties of small invariants, II, Rev. Roumanie Math. Puves Appl., 31 (1986), pp. 539-544. | MR | Zbl
,[15] Embedded projective varieties of small invariants, III, in Algebraic Geometry, Proceedings of Conference on Hyperplane Sections, L'Aquila, Italy, 1988 Lecture Notes in Math., 1417 (1990), pp. 138-154. | MR | Zbl
,[16] A generalization of curve genus for ample vector bundles, I, Comm. Alg., 27 (1999), pp. 4327-4335. | MR | Zbl
,[17] Ample and spanned vector bundles of minimal curve genus, Arch. Math., 66 (1996), pp. 141-149. | MR | Zbl
- - ,[18] Projective manifolds whose topology is strongly reflected in their hyperplane sections, Geom. Dedicata, 21 (1986) pp. 357-374. | MR | Zbl
- ,[19] Ample vector bundles of small curve genera, Arch. Math., 70 (1998) pp. 239-243. | MR | Zbl
,[20] Fano manifolds and vector bundles, Math. Ann., 294 (1992) pp. 151-165. | MR | Zbl
- - ,[21] Length of extremal rays and generalized adjunction, Math. Z., 200 (1989), pp. 409-427. | MR | Zbl
,[22] On ample vector bundles whose adjoint bundles are not numerically effective, Duke Math. J., 60 (1990) pp. 671-687. | MR | Zbl
- ,