@article{RSMUP_2010__123__91_0, author = {Tang, Sufang and Niu, Pengcheng}, title = {Morrey estimates for parabolic nondivergence operators of {H\"ormander} type}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {91--130}, publisher = {Seminario Matematico of the University of Padua}, volume = {123}, year = {2010}, mrnumber = {2683293}, zbl = {1230.35142}, language = {en}, url = {https://www.numdam.org/item/RSMUP_2010__123__91_0/} }
TY - JOUR AU - Tang, Sufang AU - Niu, Pengcheng TI - Morrey estimates for parabolic nondivergence operators of Hörmander type JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2010 SP - 91 EP - 130 VL - 123 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2010__123__91_0/ LA - en ID - RSMUP_2010__123__91_0 ER -
%0 Journal Article %A Tang, Sufang %A Niu, Pengcheng %T Morrey estimates for parabolic nondivergence operators of Hörmander type %J Rendiconti del Seminario Matematico della Università di Padova %D 2010 %P 91-130 %V 123 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2010__123__91_0/ %G en %F RSMUP_2010__123__91_0
Tang, Sufang; Niu, Pengcheng. Morrey estimates for parabolic nondivergence operators of Hörmander type. Rendiconti del Seminario Matematico della Università di Padova, Tome 123 (2010), pp. 91-130. https://www.numdam.org/item/RSMUP_2010__123__91_0/
[1]
[2] Schauder estimates for parabolic nondivergence operators of Hörmande type, J. Differential Equations, 234 (1) (2007), pp. 177--245. | MR | Zbl
- ,
[3]
[4] Commutators of singular integrals in homogeneous spaces, Boll. Unione Mat. Italiana, 10-B (7) (1996), pp. 843--883. | MR | Zbl
- ,
[5]
[6] Commutators of integral operators with positive kernels, Le Mat., XLIX, 49 (1994), pp. 149--168. | MR | Zbl
,[7] Espace des functions à variation moyenne bornée sur un espace de nature homogène, C.R. Math. Acad. Sci. Paris, 286 (1978), pp. 139--142. | MR | Zbl
,[8] Singular integral operators and differential equations, Amer. J. Math., 79 (1957), pp. 901--921. | MR | Zbl
- ,[9] Elliptic equation of second order and elliptic system, Science Press, Beijing, 1991.
- ,
[10] Interior
[11]
[12] Analyse Harmonique Non-Commutative sur Certains Espaces Homognes, in: Lecture Notes in Mathematics, Vol. 242 (Springer-Verlag, Berlin-Heidelberg-New York, 1971). | MR | Zbl
- ,[13] Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal., 166 (2) (1999), pp. 179--196. | MR | Zbl
- - ,[14] Interior estimates in Morrey spaces for strong solutions to nondivergence form elliptic equations with discontinuous coefficients, J. Funct. Anal., 112 (2) (1993), pp. 241--256. | MR | Zbl
- ,[15] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (2) (1975), pp. 161--207. | MR | Zbl
,[16] Boundedness of operators in Morrey spaces on homogenous spaces and its application, Acta. Math. Sinica (New Series), 14 (4) (1998), pp. 625--634. | MR | Zbl
- - ,[17] Subelliptic eigenvalue problems, in: Proceedings of the Conference on harmonic Analysis in honor of Antoni Zygmund, pp. 590--606, Wadsworth Math. Series, 1981. | MR | Zbl
- ,
[18] Estimates for the
[19] Elliptic partial differential equations of second order, 2nd ed. Springer-Verlag, Berlin, 1983. | MR | Zbl
- ,[20] Hypoelliptic second order differential equations, Acta Mathematica, 119 (1967), pp. 147--171. | MR | Zbl
,
[21] A mostly elementary proof of Morrey space estimates for elliptic and parabolic equations with
[22] Lipschitz functions on spaces of homogeneous type, Adv. Math., 33 (3) (1979), pp. 257--270. | MR | Zbl
- ,[23] Balls and metrics defined by vector fields I:Basic properties, Acta Math., 155 (1985), pp. 103--147. | MR | Zbl
- - ,[24] Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), pp. 247--320. | MR | Zbl
- ,[25] Fundamental solutions and geometry of sum of squares of vector fields, Invent. Math., 78 (1) (1984), pp. 143--160. | MR | Zbl
,