@article{RSMUP_2010__124__185_0, author = {Tralli, Giulio}, title = {Levi curvature with radial symmetry : a sphere theorem for bounded {Reinhardt} domains of $\mathbb {C}^2$}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {185--196}, publisher = {Seminario Matematico of the University of Padua}, volume = {124}, year = {2010}, mrnumber = {2752684}, zbl = {1248.32002}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2010__124__185_0/} }
TY - JOUR AU - Tralli, Giulio TI - Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$ JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2010 SP - 185 EP - 196 VL - 124 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2010__124__185_0/ LA - en ID - RSMUP_2010__124__185_0 ER -
%0 Journal Article %A Tralli, Giulio %T Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$ %J Rendiconti del Seminario Matematico della Università di Padova %D 2010 %P 185-196 %V 124 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2010__124__185_0/ %G en %F RSMUP_2010__124__185_0
Tralli, Giulio. Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$. Rendiconti del Seminario Matematico della Università di Padova, Tome 124 (2010), pp. 185-196. http://archive.numdam.org/item/RSMUP_2010__124__185_0/
[1] An Alexandrov type theorem for Reinhardt domains of , Contemporary Math., 400 (2006), pp. 129--146. | Zbl
- ,[2] A sphere theorem for a class of Reinhardt domains with constant Levi curvature, Forum Math., 20 (2008), pp. 571--586. | MR
- ,[3] Function theory of several complex variables, Wiley, New York, 1982. | MR | Zbl
,[4] Integral formulas for a class of curvature PDE's and applications to isoperimetric inequalities and to symmetry problems, Forum Math, 22 (2010), pp. 255--267. | MR | Zbl
- ,[5] Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems, J. Differential Equations, 202 (2004), pp. 306--331. | MR | Zbl
- ,[6] Levi umbilical surfaces in complex space, J. Reine Angew. Math., 603 (2007), pp. 113--131. | MR | Zbl
- ,