@article{RSMUP_2011__126__245_0, author = {Smith, Howard}, title = {Groups with all subgroups subnormal or {nilpotent-by-Chernikov}}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {245--253}, publisher = {Seminario Matematico of the University of Padua}, volume = {126}, year = {2011}, mrnumber = {2918210}, zbl = {1256.20027}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2011__126__245_0/} }
TY - JOUR AU - Smith, Howard TI - Groups with all subgroups subnormal or nilpotent-by-Chernikov JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2011 SP - 245 EP - 253 VL - 126 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2011__126__245_0/ LA - en ID - RSMUP_2011__126__245_0 ER -
%0 Journal Article %A Smith, Howard %T Groups with all subgroups subnormal or nilpotent-by-Chernikov %J Rendiconti del Seminario Matematico della Università di Padova %D 2011 %P 245-253 %V 126 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2011__126__245_0/ %G en %F RSMUP_2011__126__245_0
Smith, Howard. Groups with all subgroups subnormal or nilpotent-by-Chernikov. Rendiconti del Seminario Matematico della Università di Padova, Volume 126 (2011), pp. 245-253. http://archive.numdam.org/item/RSMUP_2011__126__245_0/
[1] Introduction to Commutative Algebra, (Addison-Wesley, 1969). | MR | Zbl
- ,[2] On maximal subrings, (FJMS) 32 (2009), pp. 107-118. | MR | Zbl
,[3] On the existence of maximal subrings in commutative artinian rings, J. Algebra Appl., 9 (5) (2010), pp. 771-778. | MR | Zbl
- ,[4] On Maximal Subrings of Commutative Rings, to appear in Algebra Colloquium (2011). | Zbl
- ,[5] Some Condition for Finiteness and Commutativity of Rings. Int. J. Math. Math. Sci., 13 (3) (1990), pp. 535-544. | MR | Zbl
- ,[6] On finiteness of rings with finite maximal subrings. J. Math. Math. Sci., 16 (2) (1993), pp. 351-354. | MR | Zbl
- ,[7] Infinite algebraic extensions of finite fields (Contemporary mathemathics, 1989). | MR | Zbl
- ,[8] Homomorphismes minimaux danneaux, J. Algebra, 16 (1970), pp. 461-471. | MR | Zbl
- ,[9] Algebraic curves (Benjamin, New York, 1969). | MR | Zbl
,[10] Algebraic geometry (Graduate Texs in Math. 52, Springer-Verlag, New York-Heidelberg-Berlin, 1977). | MR | Zbl
,[11] Lecture in Abstract Algebra III, Theorey of Fields and Galois Theory (Graduate Text in Mathematics 32, Springer-Verlag, New York, 1964). | MR | Zbl
,[12] Commutative Rings, Revised edn (University of Chicago Press, Chicago 1974). | MR | Zbl
,[13] The Finiteness of a ring with a finite maximal subrings, Comm. Algebra, 21 (4) (1993), pp. 1389-1392. | MR | Zbl
,[14] A finiteness theorem for rings, Proc. Roy. Irish Acad. Seet. A, 92 (2) (1992), pp. 285-288. | MR | Zbl
,[15] A First Course in Noncmmutative Rings, Second edn, (Springer-Verlag, 2001). | MR | Zbl
,[16] Algebra with a finite-dimensional maximal subalgebra. Comm. Algebra, 33 (1) (2005), pp. 339-342. | MR | Zbl
- ,[17] Maximal subrings, Ph.D. Dissertation. (University of Chicago, 1975). | MR
,[18] Field Theory, Second edn. (Springer-Verlag, 2006). | MR | Zbl
,[19] Algebraic Function Fields and Codes, Second edn, (Springer-Verlag, Berlin Heidelberg, 2009). | MR | Zbl
,[20] Topics in the Theory of Algebraic Function Fields, (Brikhauser Boston, 2006). | MR | Zbl
,[21] Hyperelliptic function fields, Proceedings of Ottawa Mathematics Conference, May (1-2), (2008).
,