A Convergence Theorem for Immersions with L 2 -Bounded Second Fundamental Form
Rendiconti del Seminario Matematico della Università di Padova, Tome 127 (2012), pp. 235-248.
@article{RSMUP_2012__127__235_0,
     author = {Ndiaye, Cheikh Birahim and Sch\"atzle, Reiner},
     title = {A {Convergence} {Theorem} for {Immersions} with $L^2${-Bounded} {Second} {Fundamental} {Form}},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {235--248},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {127},
     year = {2012},
     mrnumber = {2978007},
     zbl = {1254.53091},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2012__127__235_0/}
}
TY  - JOUR
AU  - Ndiaye, Cheikh Birahim
AU  - Schätzle, Reiner
TI  - A Convergence Theorem for Immersions with $L^2$-Bounded Second Fundamental Form
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2012
SP  - 235
EP  - 248
VL  - 127
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2012__127__235_0/
LA  - en
ID  - RSMUP_2012__127__235_0
ER  - 
%0 Journal Article
%A Ndiaye, Cheikh Birahim
%A Schätzle, Reiner
%T A Convergence Theorem for Immersions with $L^2$-Bounded Second Fundamental Form
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2012
%P 235-248
%V 127
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2012__127__235_0/
%G en
%F RSMUP_2012__127__235_0
Ndiaye, Cheikh Birahim; Schätzle, Reiner. A Convergence Theorem for Immersions with $L^2$-Bounded Second Fundamental Form. Rendiconti del Seminario Matematico della Università di Padova, Tome 127 (2012), pp. 235-248. http://archive.numdam.org/item/RSMUP_2012__127__235_0/

[1] W. Blaschke, Vorlesungen Ueber Differentialgeometrie III, Springer (1929).

[2] G. Friesecke - R. James - S. Müller, A theorem on geometric rigidity and the derivation on nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55, no. 11 (2002), pp. 1461-1506. | MR | Zbl

[3] S. W. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys., 9 (1968), pp. 598-604. | JFM | Zbl

[4] W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch., C28 (1973), pp. 693-703.

[5] J. E. Hutchinson, Second Fundamental Form for Varifolds and the Existence of Surfaces Minimizing Curvature. Indiana Univ. Math. J., 35, No 1 (1986), pp. 45-71. | MR | Zbl

[6] E. Kuwert - R. Schätzle, Removability of point singularity of Willmore surfaces, Ann. of Math., 160, no. 1, pp. 315-357. | MR | Zbl

[7] J. Langer, A compactness theorem for surfaces with L p -bounded second fundamental form, Math. Ann., 270 (1985), pp. 223-234. | MR | Zbl

[8] R. Schätzle, The Willmore boundary problem, Cal. Var. PDE, 37 (2010), pp. 275-302. | MR | Zbl

[9] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Center for Mathematical Analysis Austrian National University, Volume 3. | MR | Zbl

[10] L. Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom., Vol 1, no. 2 (1993), pp. 281-326. | MR | Zbl

[11] G. Thomsen, Über konforme Geometrie I: Grundlagen der Konformen Flächentheorie, Abh. Math. Sem. Hamburg (1923), pp. 31-56. | JFM

[12] T. J. Willmore, Note on embedded surfaces, Ann. Stiint. Univ. Al. I. Cuza Iasi, Sect. Ia Mat. (N. S) 11B (1965), pp. 493-496. | MR | Zbl