@article{RSMUP_2013__129__17_0, author = {De Medts, Tom and Mar\'oti, Attila}, title = {Perfect numbers and finite groups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {17--34}, publisher = {Seminario Matematico of the University of Padua}, volume = {129}, year = {2013}, mrnumber = {3090628}, zbl = {1280.20026}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2013__129__17_0/} }
TY - JOUR AU - De Medts, Tom AU - Maróti, Attila TI - Perfect numbers and finite groups JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2013 SP - 17 EP - 34 VL - 129 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2013__129__17_0/ LA - en ID - RSMUP_2013__129__17_0 ER -
%0 Journal Article %A De Medts, Tom %A Maróti, Attila %T Perfect numbers and finite groups %J Rendiconti del Seminario Matematico della Università di Padova %D 2013 %P 17-34 %V 129 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2013__129__17_0/ %G en %F RSMUP_2013__129__17_0
De Medts, Tom; Maróti, Attila. Perfect numbers and finite groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 129 (2013), pp. 17-34. http://archive.numdam.org/item/RSMUP_2013__129__17_0/
[1] The solution of , and some related considerations, unpublished manuscript (1974).
,[2] Recovering n from , MathOverflow, http://mathoverflow.net/questions/56376.
,[3] Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin 15, no. 4 (2008), pp. 699-704. | MR
- ,[4] Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, New York, 1967. | MR
,[5] Perfect numbers and groups, arXiv:math/0104012.
,[6] Is there an odd-order group whose order is the sum of the orders of the proper normal subgroups?, Math. Overflow, http://mathoverflow.net/questions/54851.
,[7] W. A. Stein et. al., Sage Mathematics Software (Version 4.6.1), The Sage Development Team, 2011, http://www.sagemath.org.
[8] Abundancy outlaws of the form , J. Integer Sequences 10 (2007), Article 09.7.6. | MR
- ,[9] http://java.ugent.be/~tdemedts/leinster.