Complete determination of the number of Galois points for a smooth plane curve
Rendiconti del Seminario Matematico della Università di Padova, Tome 129 (2013), pp. 93-114.
@article{RSMUP_2013__129__93_0,
     author = {Fukasawa, Satoru},
     title = {Complete determination of the number of {Galois} points for a smooth plane curve},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {93--114},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {129},
     year = {2013},
     mrnumber = {3090633},
     zbl = {1273.14066},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2013__129__93_0/}
}
TY  - JOUR
AU  - Fukasawa, Satoru
TI  - Complete determination of the number of Galois points for a smooth plane curve
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2013
SP  - 93
EP  - 114
VL  - 129
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2013__129__93_0/
LA  - en
ID  - RSMUP_2013__129__93_0
ER  - 
%0 Journal Article
%A Fukasawa, Satoru
%T Complete determination of the number of Galois points for a smooth plane curve
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2013
%P 93-114
%V 129
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2013__129__93_0/
%G en
%F RSMUP_2013__129__93_0
Fukasawa, Satoru. Complete determination of the number of Galois points for a smooth plane curve. Rendiconti del Seminario Matematico della Università di Padova, Tome 129 (2013), pp. 93-114. http://archive.numdam.org/item/RSMUP_2013__129__93_0/

[1] E. Arbarello - M. Cornalba - P. A. Griffiths - J. Harris, Geometry of algebraic curves, Vol. I. Grundlehren der Mathematischen Wissenschaften 267, Springer-Verlag, New York, 1985. | MR | Zbl

[2] H. C. Chang, On plane algebraic curves, Chinese J. Math. 6 (1978), pp. 185-189. | MR | Zbl

[3] S. Fukasawa, Galois points on quartic curves in characteristic 3, Nihonkai Math. J. 17 (2006), pp. 103-110. | MR | Zbl

[4] S. Fukasawa, On the number of Galois points for a plane curve in positive characteristic, Comm. Algebra 36 (2008), pp. 29-36; II, Geom. Dedicata 127 (2007), pp. 131-137; III, ibid. 146 (2010), pp. 9-20; IV, preprint, arXiv:1011.3648. | Zbl

[5] S. Fukasawa, Galois points for a plane curve in arbitrary characteristic, Proceedings of the IV Iberoamerican conference on complex geometry, Geom. Dedicata 139 (2009), pp. 211-218. | MR | Zbl

[6] S. Fukasawa, Galois points for a non-reflexive plane curve of low degree, preprint. | MR

[7] S. Fukasawa, Galois points for a plane curve in characteristic two, preprint. | MR | Zbl

[8] D. Goss, Basic structures of function field arithmetic, Springer-Verlag, Berlin (1996). | MR

[9] A. Hefez, Non-reflexive curves, Compositio Math. 69 (1989), pp. 3-35. | EuDML | Numdam | MR | Zbl

[10] A. Hefez - S. Kleiman, Notes on the duality of projective varieties, ]Geometry Today^ , Prog. Math. vol 60, Birkhäuser, Boston, 1985, pp. 143-183. | MR

[11] M. Homma, Funny plane curves in characteristic p > 0, Comm. Algebra, 15 (1987), pp. 1469-1501. | MR

[12] M. Homma, A souped-up version of Pardini's theorem and its application to funny curves, Compositio Math. 71 (1989), pp. 295-302. | Numdam | MR

[13] M. Homma, Galois points for a Hermitian curve, Comm. Algebra 34 (2006), pp. 4503-4511. | MR

[14] K. Miura - H. Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra, 226 (2000), pp. 283-294. | MR

[15] H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin (1993). | MR

[16] K. O. Stöhr - J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3), 52 (1986), pp. 1-19. | MR

[17] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra, 239 (2001), pp. 340-355. | MR