When all reduced strongly flat modules are projective
Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 15-22.
@article{RSMUP_2014__131__15_0,
     author = {Fuchs, L\'aszl\'o and Bum Lee, Sang},
     title = {When all reduced strongly flat modules are projective},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {15--22},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {131},
     year = {2014},
     mrnumber = {3217748},
     zbl = {06329755},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2014__131__15_0/}
}
TY  - JOUR
AU  - Fuchs, László
AU  - Bum Lee, Sang
TI  - When all reduced strongly flat modules are projective
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2014
SP  - 15
EP  - 22
VL  - 131
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2014__131__15_0/
LA  - en
ID  - RSMUP_2014__131__15_0
ER  - 
%0 Journal Article
%A Fuchs, László
%A Bum Lee, Sang
%T When all reduced strongly flat modules are projective
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2014
%P 15-22
%V 131
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2014__131__15_0/
%G en
%F RSMUP_2014__131__15_0
Fuchs, László; Bum Lee, Sang. When all reduced strongly flat modules are projective. Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 15-22. http://archive.numdam.org/item/RSMUP_2014__131__15_0/

[1] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. | MR | Zbl

[2] S. Bazzoni and L. Salce, Almost perfect domains, Coll. Math. 95(2003), 285–301. | MR | Zbl

[3] L. Fuchs and R. Göbel, Testing for cotorsionness over domains, Rendiconti Sem. Mat. Univ. Padova 118 (2007), 85–99. | Numdam | MR | Zbl

[4] L. Fuchs and L. Salce, Modules over non-Noetherian Domains, Math. Surveys and Monographs, vol. 84 (Amer. Math. Society, Providence, 2001). | MR | Zbl

[5] R. Göbel and W. May, Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215–226. | MR | Zbl

[6] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, Expositions in Math., vol. 41 (W. de Gruyter, 2006). | Zbl

[7] S.B. Lee, Strongly flat modules over Matlis domains (submitted).

[8] E. Matlis, Cotorsion modules, Memoirs Amer. Math. Soc. 49 (1964). | MR | Zbl