@article{RSMUP_2014__132__25_0, author = {Afrouzi, G. A. and Chung, N. T. and Shakeri, S.}, title = {Positive solutions for a semipositone problem involving nonlocal operator}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {25--32}, publisher = {Seminario Matematico of the University of Padua}, volume = {132}, year = {2014}, mrnumber = {3276823}, zbl = {1304.35276}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2014__132__25_0/} }
TY - JOUR AU - Afrouzi, G. A. AU - Chung, N. T. AU - Shakeri, S. TI - Positive solutions for a semipositone problem involving nonlocal operator JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 25 EP - 32 VL - 132 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2014__132__25_0/ LA - en ID - RSMUP_2014__132__25_0 ER -
%0 Journal Article %A Afrouzi, G. A. %A Chung, N. T. %A Shakeri, S. %T Positive solutions for a semipositone problem involving nonlocal operator %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 25-32 %V 132 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2014__132__25_0/ %G en %F RSMUP_2014__132__25_0
Afrouzi, G. A.; Chung, N. T.; Shakeri, S. Positive solutions for a semipositone problem involving nonlocal operator. Rendiconti del Seminario Matematico della Università di Padova, Volume 132 (2014), pp. 25-32. http://archive.numdam.org/item/RSMUP_2014__132__25_0/
[1] Existence of positive solutions for Kirchhoff type equations, Electron. J. Differential Equations 2013, no. 180, 8 pp. | MR | Zbl
- - ,[2] Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), pp. 85–93. | MR | Zbl
- - ,[3] On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity, Math. Comput. Modelling 49 (2009), pp. 1089–1096. | MR | Zbl
- ,[4] Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. 30 (1997), no. 7, pp. 4619–4627. | MR | Zbl
- ,[5] On an elliptic equation of -Kirchhoff type via variational methods, Bull. Austral. Math. Soc. 74 (2006), pp. 263–277. | MR | Zbl
- ,[6] Three solutions for a nonlocal Dirichlet boundary value problem involving the -Laplacian, Appl. Anal. 92 (2013), no. 1, pp. 191–210. | MR | Zbl
,[7] Solutions for a -Kirchhoff type equation with Neumann boundary data, Nonlinear Anal. Real World Appl. 12 (2011), pp. 2666–2680. | MR | Zbl
- ,[8] On the sub-supersolution method for -Kirchhoff type equations, J. Inequal. Appl. (2012), 11 pp. | MR | Zbl
- ,[9] Mechanik, Teubner, Leipzig, Germany, 1883.
,[10] Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. 63 (2005), pp. 1967–1977. | Zbl
,[11] Existence results for classes of -Laplacian semipositone equations, Bound. Value Probl. (2006), Art. ID 87483, 7 pp. | MR | Zbl
- ,[12] Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006), no. 1, pp. 246–255. | MR | Zbl
- ,[13] On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46 (2010), no. 4, pp. 543–549. | MR | Zbl
,[14] Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal. 74 (2011), pp. 1212–1222. | MR | Zbl
- ,[15] Existence and multiplicity results for Kirchhoff type problems with four-superlinear potentials, Appl. Anal. 91 (2012), no. 11, pp. 2045–2055. | MR | Zbl
- ,[16] Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317 (2006), no. 2, pp. 456–463. | MR | Zbl
- ,